|} PRECISE
AUTOMATION

Guidance Programming Language

Introduction to GPL

Version 4.2.0, January 1, 2019
PRELIMINARY RELEASE
P/N: GPLO0-DI-00010

Precise Automation Inc., 727 Filip Road, Los Altos, California 94024
Wwww.preciseautomation.com

Document Content

The information contained herein is the property of Precise Automation Inc., and may not be copied,
photocopied, reproduced, translated, or converted to any electronic or machine-readable form in whole or
in part without the prior written approval of Precise Automation Inc. The information herein is subject to
change without notice and should not be construed as a commitment by Precise Automation Inc. This
information is periodically reviewed and revised. Precise Automation Inc. assumes no responsibility for
any errors or omissions in this document.

Copyright © 2004-2019 by Precise Automation Inc. All rights reserved.
The Precise Logo is a registered trademark of Precise Automation Inc.
Trademarks

GIlO, GSB, Guidance 3400, Guidance 3300, Guidance 3200, Guidance 2600, Guidance 2400, Guidance
2300, Guidance 2200, Guidance 1400, Guidance 1300, Guidance 1200, Guidance 0200 Slave Amplifier,
Guidance 0006, Guidance 0004, Guidance Controller, Guidance Development Environment, GDE,
Guidance Development Suite, GDS, Guidance Dispense, Guidance Input and Output Module, GIO,
Guidance Programming Language, GPL, Guidance Slave Board, Guidance System, Guidance System
D4/D6, PrecisePlace 1300, PrecisePlace 1400, PrecisePlace 2300, PrecisePlace 2400, PrecisePlace
0120, PrecisePlace 0130, PrecisePlace 0140, PreciseFlex 300, PreciseFlex 400, PreciseFlex 3400,
PreciseFlex 1300, PreciseFlex 1400, PrecisePower 300, PrecisePower 500, PrecisePower 2000,
PreciseVision, RIO are either registered or trademarks of Precise Automation Inc., and may be registered
in the United States or in other jurisdictions including internationally. Other product names, logos,
designs, titles, words or phrases mentioned within this publication may be trademarks, service marks, or
trade names of Precise Automation Inc. or other entities and may be registered in certain jurisdictions
including internationally.

Any trademarks from other companies used in this publication are the property of those respective
companies. In particular, Visual Basic, Visual Basic 6 and Visual Basic.NET are trademarks of Microsoft
Inc.

Disclaimer

PRECISE AUTOMATION INC., MAKES NO WARRANTIES, EITHER EXPRESSLY OR IMPLIED,
REGARDING THE DESCRIBED PRODUCTS, THEIR MERCHANTABILITY OR FITNESS FOR ANY
PARTICULAR PURPOSE. THIS EXCLUSION OF IMPLIED WARRANTIES MAY NOT APPLY TO
YOU. PLEASE SEE YOUR SALES AGREEMENT FOR YOUR SPECIFIC WARRANTY TERMS.

Precise Automation Inc.

727 Filip Road

Los Altos, California 94024
U.S.A.
www.preciseautomation.com

Warning Labels

The following warning and caution labels are utilized throughout this manual to convey critical information
required for the safe and proper operation of the hardware and software. It is extremely important that all
such labels are carefully read and complied with in full to prevent personal injury and damage to the
equipment.

There are four levels of special alert notation used in this manual. In descending order of importance,
they are:

DANGER: This indicates an imminently hazardous situation, which, if not
avoided, will result in death or serious injury.

WARNING: This indicates a potentially hazardous situation, which, if not
avoided, could result in serious injury or major damage to the equipment.

CAUTION: This indicates a situation, which, if not avoided, could result in minor
injury or damage to the equipment.

NOTE: This provides supplementary information, emphasizes a point or
procedure, or gives a tip for easier operation

The Guidance Programming Language

Table Of Contents

1. GPL Overview
2.Statement structure
3. Data Type and Variables
3.1. Basic Data Types
3.2. Variable Declarations
3.3. Data Type Arrays
3.4. Scope of Names
4. Objects and Classes
4. Objects and Classes
4.1. Objects, Fields, Properties and Methods
4.2. Classes of Objects
4.3. The Dot “.” Operator
4.4. Object Variables and the New Clause
4.5. Copying Object Variables and Values
4.6. Objects as Procedure Arguments
4.7. User-Defined Classes
4.8. Limitations
5. Arithmetic Operations
5.1. Arithmetic Expressions
5.2. Arithmetic Functions and Methods
6. Strings and String Expressions
7. Assignment Statements
8. Control Structures
9. Procedures, Delegates and Modules
9.1. Subroutines and Functions
9.2. Delegates
9.3. Modules
10. Exception Handling
11. Motion and Controller Related Classes
11. Motion and Controller Related Classes
11.1. Signal Class
11.2. Location Class and Objects
11.3. Profile Class and Objects
11.4. Move Class

© ©O© ©O© 0o O A N N DN P

W W W W W W W W NN N DNNDNMNDNPFP PP P PP PP PP REP PR
© 00 A A W W O O N OO WN © 0O OO OO W DN P+ +» OO

11.5. RefFrame Class and Objects
11.6. Controller Class
11.7. Robot Class
11.8. Latch Class
12. Networking Communications

12. Networking Communications

12.1. Networking Definitions and Classes

12.2. TCP Server

12.3. TCP Client

12.4. UDP Server and Client
13. MODBUS/TCP Communications

13. MODBUS/TCP Communications

13.1. Modbus Class

13.2. Modbus Master Connection

13.3. Modbus Master Examples
14. File I/O, Serial /0 and Streams

14. File I/O, Serial /0O and Streams

14.1. Classes and Methods

14.2. File I/O

14.3. Serial /0

14.4. Console Output

14.5. Non-Volatile Memory (NVRAM)
15. Vision Guidance

15. Vision Guidance

15.1. Classes and Methods

15.2. Vision Interface

15.3. Vision Procedure Example
16. Managing and Executing GPL Projects
17. Thread Control

17. Thread Control

17.1. Thread Synchronization

17.2. Thread Scheduling

17.3. The Thread Class

17.4. Thread-Safe Data Access in GPL
18. XML Data Exchange

18. XML Data Exchange

18.1. Document Object Model (DOM)

41
44
46
47
48
48
49
51
52
53
56
56
57
58
58
59
59
60
62
63
65
65
68
68
69
71
71
72
73
73
74
74
75
76
78
78
78

Vi

18.2. Character Representation
18.3. XmlIDoc Class

18.4. XmINode Class

18.5. Examples

18.6. Error Handling

19. Misc. Unsupported Features

79
80
80
82
84
84

The Guidance Programming Language

1. GPL Overview

This document introduces you to the Guidance Programming Language, GPL. GPL is a full-featured
language designed to allow you to program and automatically operate motion controllers with machine
vision and the mechanical mechanisms (“robots”) that are controlled by these devices.

GPL can be employed in a wide variety of applications including: general robotics; mechanical assembly;
material handling and packaging; palletizing; carton loading or case packing; wafer handling or machine
control in the semiconductor industry; life sciences equipment applications; or applications requiring
conveyor tracking and/or vision guidance.

This language can be easily applied to a wide range of mechanisms ranging from simple, single axis
linear and rotary devices, to complex robots that require all of their axes to be simultaneously moved in a
coordinated Cartesian fashion, to systems that have multiple robots that operate either independently or
cooperatively. The control hardware for such systems can reside in a single box or can be distributed in a
networked control architecture. Independent of the physical control architecture, GPL makes use of its
built-in networking ability and knowledge of robot geometries (kinematics) to allow mechanisms to be
centrally programmed and easily controlled in Cartesian coordinates.

To support such a wide range of applications and mechanisms, GPL has extensive motion control
facilities including: blending of joint and Cartesian interpolated motions (“continuous path”); s-curve
profiles; base and tool offsets; built-in kinematic models for a variety of robots; mathematics for
manipulating robot and part positions and orientations; and frames of reference including moving frames
of references for conveyor tracking.

GPL has been targeted to execute on the Precise Automation Guidance Controller, which supports a
networked control architecture. This controller includes a web based operator interface, a unified
configuration and parameter database, integrated data logging capabilities, Category 3 (CAT-3) safety
circuitry, and a number of facilities that simplify both local and remote diagnostics and maintenance.

The Guidance Controller can in fact be programmed using three different methods: (1) a forms based
teach-and-repeat technique that executes “MotionBlocks” in response to digital input signals; (2) GPL as
described in this document; or (3) by any standard Windows PC language, which remotely controls the
system via a TCP/IP connection. The MotionBlocks method is ideal for simple applications, especially
those where a PLC is providing overall cell control, and is extremely easy-to-use since no programming
language knowledge is required. GPL has the advantage of being embedded within the controller and
allows more complex applications to be addressed while still permitting the controller to be operated in a
standalone mode. The TCP/IP method allows programmers to leverage the capabilities of a PC (or other
standard computing platforms) at runtime and to utilize the language of their choice.

In this document, we describe the features and syntax for the embedded system, the “Guidance
Programming Language” (GPL).

The Guidance Programming Language

GPL is a full-featured programming language. The fundamental syntax for GPL has been modeled after
object-oriented forms of the Basic Language in order to provide a syntax and development environment
that are familiar to many application developers. The Basic syntax has been extensively augmented with
“classes” and “objects” that implement the motion control and vision capabilities. A Windows PC is
required to develop and debug application programs but need not be connected when the controller is
operating in automatic mode. Programmers who are familiar with Visual Basic .Net 2003 should be very
comfortable with many of the computational and structural elements of GPL.

In the following sections, an introduction and overview of the GPL syntax is provided. Where it is
important, we point out differences between GPL and the various variants of the Basic Language. These
notes are highlighted by enclosing them within square brackets (“[]"). For more detailed information on
individual instructions, objects and classes, methods, and properties, please see the GPL Dictionary
document.

2.Statement structure

2.1. Program lines can begin with an optional line label. Line labels must either be a valid variable
name (e.g. labell) or an integer literal (e.g. 100). Line labels must always be followed by a colon

(:). The label and colon can optionally be followed by a standard statement. [In VB6 and some other
version of Basic, no label separation character was required.]

2.2. The standard line is formatted as follows:
Label: Statement ' Comment

2.3. An apostrophe (') marks the beginning of a comment. Comments can follow a standard statement
on a line. Full line comments and blank lines are permitted.

2.4. Lines that begin with a # character are ignored. This is useful for defining "#Region" and "#End
Region" lines that mark blocks of code that can be expanded or collapsed using the outlining feature of an
editor.

2.5. Only one statement is permitted per line but a single statement can be continued on multiple
lines. To continue a line, the end of the line must contain a space character followed by an under bar (*
_"). Comment lines cannot be continued and lines cannot be broken at certain points (e.g. in the middle
of a variable name).

2.6. There is no termination character at the end of a statement.

3. Data Type and Variables

3.1. Basic Data Types

3.1.1. The following table describes the basic data types that are supported in GPL:

The Guidance Programming Language

Supported Data Types

Boolean True (<>0) or False (=0) values.
Byte Unsigned 8-bit integer numbers ranging from 0 to 255 in value.
Short Signed 16-bit integer numbers.
Integer Signed 32-bit integer numbers.
Single 32 bit single precision floating point numbers.
Double 64 bit double precision floating point numbers.
String String variables can have values that are of arbitrary length

Universal data types for object oriented Basic. Internally, this is a pointer to
Obi any type of data or group of data. The group of data can consist of a mix of

ject data type values. All built-in system structures/classes are represented as
yp Y p
objects. See a later section for a general description of Objects.

3.1.2. The following data types found in VB.Net and VB6 are not supported:

Unsupported VB6/VB.Net Data Types
Long or Int64 64-bit signed integer number
Decimal 96-bit signed integer scaled by a power of 10
Int16 Synonym for Short
Int32 Synonym for Integer
Char 16-bit Unicode
Variant Old universal data type in VB6
Date Date and time values

3.1.3. Identifier type characters and literal type characters, which are special postfix characters used to
specify the type of variables and literal constants, are not supported. For example, in other systems,
725L identifies 725 as a Long constant and “Dim Abc!” declares Abc to be of type Single.

3.1.4. In general, the system automatically converts one type of variable to another as needed. For
example, all integer types (Boolean, Byte, Short, Integer) are automatically converted to double
precision floating point values when used in floating point expressions. However, when necessary, the
following explicit conversion functions can be utilized to force a specific type conversion. These functions
are all described in greater detail in the Software Reference Section.

Explicit Type Conversion Functions
CBool Converts any numeric type or String to Boolean.
CByte Converts any numeric type or String to Byte.
CDbl Converts any numeric type or String to Double.
Cint IConverts any humeric type or String to Integer.
CShort Converts any humeric type or String to Short.
CSng IConverts any numeric type or String to Single.
CStr Converts any numeric type to String.
Hex Converts an Integer value to String in Hexadecimal format.

3.1.5. All input characters are represented as 7-bit ASCIIl. Extended 8-bit ASCII and Unicode characters
are not accepted in symbol names or in string literals.

3.1.6. Hexadecimal constant values are indicated by the prefix “&H". This syntax can cause confusion
with the “&” concatenation operator. For example, if you have a variable named “HEAD” then the

The Guidance Programming Language

expression: String &HEAD causes a syntax error since &HEAD is interpreted as the hex value “EAD”. To
avoid this problem, insert a space after “&” if it is being used as a concatenation operator.

3.1.7. Octal constant values are indicated by the prefix “&0O”. This syntax can causes confusion with the
“&” concatenation operator. For example, if you have a variable named “O2” then the expression: String
&02 causes a syntax error since &02 is interpreted as the octal value “2”. To avoid this problem, insert a
space after “&” if it is being used as a concatenation operator.

3.1.8. As a programming convenience, there are a number of constant values that are predefined in the
language. These constants all begin with "GPL_". These constants are listed in the following table and
their use is described in the language dictionary pages.

GPL Constant Values
GPL CR IASCII carriage return character (13).
GPL LF IASCII line feed character (10).
GPL Righty Assert right shouldered configuration (&HO01).
GPL Lefty Assert left shouldered configuration (&H02).
GPL Above Assert elbow above wrist configuration (&H04).
GPL Below Assert elbow below wrist configuration (&H08).
GPL Flip Assert wrist pitched up configuration (&H10).
GPL NoFlip Assert wrist pitched down configuration (&H20).
GPL Single Assert restrict wrist position to within +/- 180 degrees (&H1000).

3.2. Variable Declarations

3.2.1. Variable names can be mixed case (upper and lower case characters), but names are not case
sensitive, i.e. Abc, ABC, abc, aBC all refer to the same variable.

3.2.2. Within a given context, variable names must be unique even if they refer to variables of different
data types and variable names cannot match system keywords. For example, you cannot have a string
variable named “valuel” and an integer variable with the same name. System keywords generally refer
to words such as “For”, “If”, “Dim” that are expected to denote a built-in language capability.

3.2.3. Variable names must start with either a letter or an underscore “_". This character can be
followed by a sequence of up to 127 additional letters, numbers, and underscore characters for a total of
128. If a variable name starts with “_" it must be followed by at least one other character other than
another underscore to distinguish it from a line-continuation.

3.2.4. Dim is the basic data type declaration statement within procedures for local, i.e. automatic,
variables. If Static is used in place of Dim within a procedure, the value of the variable is preserved from
one execution of the procedure to the next. Dim variables, including array variables, are initialized to 0
(numbers), False (Booleans), or Nothing (structures, objects, or classes), each time their enclosing
procedure is executed.

Dim ii As Short
Static jj As Short

3.2.5. Variables defined within a module, outside of a procedure, are accessible by all procedures in the
module and, like Static variables, their values are preserved independently of the execution of any
procedure. If such variables are defined with Private or Dim, the variables are local to the module and

The Guidance Programming Language

cannot be accessed by procedures in other modules. If Public is used instead to declare a variable, the
variable is accessible by all procedures within all modules loaded into the controller's memory.

Module Test

Dim Count As Integer Invisible to other modules,
global in this module
Same as declaration above
Visible to all procedures in

all modules within project.

Private nBlocks As Integer
Public TotalArea As Single

End Module

Variables declared within a module can also be accessed by preceding the variable name with the
module name. This method of specifying a variable is required for cases when the same Public variable
name is found in more than one module and it is unclear from the name alone which variable is being
referenced.

Module Testl
Public aa As Integer
Public bb As Integer
End Module

Module Test2
Public aa As Integer

End Module
Module Test3
Sub MyProc
Dim ii As Integer
ii = bb " Okay since there is only bb
ii = Testl.bb " Okay but not necessary
ii = aa ® Error since aa is duplicated
ii = Testl.aa " Okay since it is clear which aa
End Sub
End Module

3.2.6. In GPL, no matter where a variable is declared in a procedure, the scope of a variable extends
throughout the procedure with the restriction that variables can only be declared in the outermost level of
a procedure.

For ii =1 To 10

Dim jj As Integer " Not allowed
kk = 1i " Forward reference to kk is allowed.
Next ii

Dim kk As Integer

In the future, we may change the scoping rules to follow other variants of Basic, such as VB.NET, more
closely.

3.2.7. Multiple declaration clauses may appear in a single statement.

Dim n As Integer, x As Double

3.2.8. The data type must always be specified.

Dim BlackObjectl * Invalid

3.2.9. If multiple variables are declared within a single statement and a variable’s type is not specified,
its type is defined by the next type definition in the statement [this is different from VB6 where all untyped

The Guidance Programming Language

variables became Variants]. Note, if a New clause (see below) is used, only a single variable name may
appear to the left of the As keyword.

Dim ii, jj As Integer " Both i1 and jj are of type Integer

3.2.10. Variable or constant values may be initialized by adding an initialization clause that beings with
an “=". For example,

Dim Count As Integer = 1 " Sets Count to 1

Each time this statement is encountered during execution, its value is initialized. If an initializer clause is
used, only a single variable name may appear to the left of the As keyword.

An arbitrary expression may appear to the right of the “=". If the variable being initialized is an object or
structure, a New keyword may appear to the right of the “=".

Be careful if you call a user-defined function as part of the initializer expression since some variables may
not be initialized yet.

Module-level variables are initialized once when a project is started and are processed in the order in
which they appear in the module. They are initialized before any user-defined procedures are executed
(except in the case where you call a user-defined function from an initializer). Errors that occur while
initializing variables are listed as part of a hidden procedure named "_Init".

3.2.11. The New keyword may appear in a clause that declares an object or structure. The New may
appear immediately after the As keyword, or may appear immediately after the “=" in an initialization
clause. New may not appear in both places within the same statement.

Dim Locl As New Location " Creates a location
" class instance
Dim Locl As Location = New Location " Equivalent to above

3.2.12. A Const keyword indicates that the variable is read-only and cannot be changed during normal
execution. Only the initialization clause can set the value of the Const keyword.

Const MaxCount As Integer = 10
MaxCount = MaxCount+1 * Invalid

3.2.13. GPL only supports strong typing, i.e. all variables must be declared in a Dim, Static, Private, or
Public statement although the specific type of a variable may be excluded and will be automatically set to
the default. [VB.Net allows strong typing to be disabled with the “Option Strict Off” statement.]

3.3. Data Type Arrays

Any of the data types described above, including objects, support array variables. The rank (dimension)
of an array can be from 1 to 4. The number of array elements within a dimension is limited by available
memory.

3.3.1. The first index in an array is always element 0. When you declare an array size, you are specifying
the upper bound for a dimension. So, the number of elements for a dimension is always equal to the
upper bound+1. For example:

Dim Count(9) As Integer * Allocates array of 10 elements

The Guidance Programming Language

Versions of Basic such as VB6 supported means for defined ranges of indices that started with an
arbitrary first index number (e.g. “10 to 20") and also statements such as “Option Base 1" that forced the
first index to always be 1. However, VB.Net always starts arrays with index 0 and this is the convention
that is supported in GPL.

3.3.2. The Dim statement is used to declare an array variable. The supported forms of this statement are
as follows:

Dim MyArray(3, 4) As Integer
Dim MyArray(,) As Integer

The first statement specifies a 2-dimensional array with 4 elements (0 to 3) in the first dimension and 5 (0
to 4) in the second, for a total of 20 elements. These elements are allocated when the Dim statement is
executed.

The second statement simply specifies a 2-dimensional array, but does not allocate any
elements. Before you can use the array, you must either assign an array to it, or you must use a ReDim
statement to allocate the elements.

When array elements are allocated, numeric arrays have the value 0 and object arrays have the value
Nothing. Initialization of array values using an “=" clause is not supported in GPL.

3.3.3. Once an array has been declared and its dimensionality established, the ReDim instruction can be
used to initialize or change the number of elements within any dimension. ReDim can be applied to any
array, so no distinction is made between dynamically sizeable arrays and fixed arrays. However, ReDim
cannot be used to change the rank of an array and ReDim cannot be used to initially declare an

array. Some examples of ReDim are as follows:

Dim Count() As Integer

ReDim Count(9)

Dim TwoDCount(2,3) As Integer
ReDim TwoDCount(1,100)

3.3.4. Whole arrays may be assigned to each other with a single statement. When that occurs, the data
are not actually copied, but a pointer to the data in the right-hand array is copied to the left-hand array
variable so that both array variables access the same data. This behavior is similar to object

variables. For example:

Dim CountA(9) As Integer

Dim CountB() As Integer

CountB = CountA " CountB now refers to the same
" data as CountA

3.3.5. When single array elements are passed as procedure arguments, they behave the same as non-
array variables of the same type. When whole array elements are passed as procedure arguments,
pointers to either the array value (ByVal) or the array variable (ByRef) are passed, and the behavior is
the same as when passing objects.

3.3.6. All arrays of variables are members of the built-in Array class. You can use properties of this class
to determine the properties of any variable array.

Property Description

Returns the upper bound for a particular dimension of an
array. The lower bound is always 0, so the total number of

array.GetUpperBound (dim)

The Guidance Programming Language

elements in this dimension is one greater than the upper

bound.

The total number of elements in the entire array, in all
array.Length dimensions.

Returns the rank, which is the number of dimensions, in the
array.Rank array

These property methods may only be used with an entire array, not with a subset or individual array
element.

Do not be confused when using the Length property with string arrays, for example, if you declare: Dim
sarray(3) As String:

sarray.Length is the number of elements in the array, in this case 4 (from 0 to 3).
sarray(0).Length is the length of the string contained in sarray(0), initially 0.

3.4. Scope of Names

Variables, constants, and procedures all have names. The section of a project where these names are
known is called the scope of the name. Attempts to access a name outside its scope results in an
"Undefined symbol" error because a valid name cannot be found by the compiler.

3.4.1. In general, a name is known within the block where it is declared, and within any blocks contained
in the block where it is declared. For example, a variable declared in a procedure is known only in that
procedure, but a variable declared in a module is known in all procedures contained in that module.

3.4.2. To access a name from outside the block where it is declared, the name must be declared as
Public. Public names can be accessed from anywhere, provided that the path to the name is fully
specified. As a special case, Public module-level names may be accessed without the module name
being specified, provided that the name is unambiguous in all modules.

For example:

Module MyMod
Public Modvar As Integer
Public Class My_class
Public Shared MaxSize As Integer
Private Shared Size2 As Integer
End Class
End Module

Module GPL
Public Sub Main
My_class.MaxSize = 100 " Invalid, path not complete
MyMod.My_class.MaxSize = 100 * Okay
MyMod.My_class.Size2 = 100 * Invalid, private variable
ModVar = 20 " Okay, special case
End Sub
End Module

The Guidance Programming Language

4. Objects and Classes

4. Objects and Classes

“Objects” and “classes” are the basis of object-oriented programming. A class defines a collection of
related data and the procedures that operate on the data. In a sense, a class can be thought of as a
template. If multiple copies (or “instances”) of a class are required to store distinct sets of data, multiple
objects of that class are created.

Objects and classes are used within GPL to provide additional functionality that is not part of the standard
Basic Language and to organize functions that are related into easy-to-access groups. This functionality
includes: mathematical operations, I/O operations, motion specifications, and robot control.

This section describes the general concepts associated with objects and classes. For illustration
purposes, some of the objects and classes that are built into GPL are mentioned briefly in this section.
The detailed description of these built-in GPL objects and classes are provided in later sections.

4.1. Objects, Fields, Properties and Methods

An object is a collection of related data and the procedures that operate on the data.

As opposed to a traditional data array, objects can and normally do contain many different types of

data. For example, the GPL Location Object that represents robot and part positions contains an array
of Double values to store a position and orientation, an Integer value for special flag bits, a Boolean to
indicate a choice of reference frames, a pointer to another object, plus other data. The values stored
within an object are called “fields”. Generally, fields are accessed via “properties” of the object. The
properties provide read and write access to field values and allow the values to be formatted, processed
or grouped. Each field can have one, multiple, or no properties associated with it. For example, several
properties of the Location Object access the same position and orientation field data to allow the data to
be presented as individual axis positions or a set of all axes positions or a Cartesian position and
orientation depending upon how the Location is defined.

From a data point of view, objects are similar to C structures. However, in addition to grouping data,
objects also have specific procedures defined for operating on the object’s fields. These object-specific
procedures are called “methods”. For example, the Location Object has methods for inverting its
Cartesian position and for combining the positions of two Location Objects.

Depending upon how they are defined, some methods operate like subroutines while others return values
like functions. If a method returns a value, it can be used in any expression that is appropriate for the
type of its returned value. If a method operates like a subroutine, it must appear in a statement by itself
and cannot appear within an expression. Either type of method can have a list of required arguments in
the same manner as subroutines and functions.

More generally, fields, properties, and methods are referred to as “members” of an object or class. For
the most part, you should only need to concern yourself with properties and methods of objects.

The Guidance Programming Language

4.2. Classes of Objects

A class is a formal description and template for a type of object and defines its fields, properties and
methods.

In general, there are two types of classes: non-global and global. A non-global class does not hold any
data and relies upon its objects for data storage. Each object for a given class will have the same types
of members but will contain an independent set of values for each member. For example, a typical robot
application will have multiple Location Objects. Each Location will store the data that describes a
specific part or robot position. However, all of the Location Objects will be derived from the same
Location Class and will have the same types of members.

A global class is like a non-global class in that it defines all of the fields, properties and methods
associated with this class. However, a global class is used when a single set or no set of data exists, so
that a global class never has any objects. For example, many of the arithmetic functions (e.g. sine,
cosine, square root) are part of the Math Class . This is done as a convenience to allow these functions
to be grouped together and therefore easily accessed. However, the Math Class has no fields, no
properties and no data, just methods. Consequently, the global Math Class has no objects.

4.3. The Dot “.” Operator

Within GPL, a period character “.”, also known as the dot operator, serves as a preface character to
identify a member of a class or an object. To access a specific member of an object or class, you would
write:

object.member or class.member

For global classes, since there are no objects, only the “class.member” form of reference can be
used. For non-global classes, most references are to the values of objects and are written as
“object.member”, although the “class.member” form is permitted for certain methods.

By making use of the dot operator, properties of objects can be used in assignment statements and
expressions in exactly the same manner as you would employ any other variable of the same data

type. Also, the dot operator permits methods to be invoked in the same manner as you would invoke any
subroutine or function.

Some examples of the dot operator are as follows:

Dim Pos_x, Value As Double

Pos_x = location_object.X+2 * Get x-axis displacement + 2
location_object.X = 3 " Set x-axis displacement property
Value = Math.Sqrt(3) ® Sgrt is method of Math Class
location_object._Here * Invoke method to record position

The dot operator can be used multiple times in succession if a property or method returns another
object. For example, the method that inverts a Location returns a Location value. Therefore, the
following could be written to first invert a Location and then extract the x-axis displacement of the result.

Pos_x = location_object.Inverse.X

10

The Guidance Programming Language

4.4. Object Variables and the New Clause

While the members of an object can be treated like any other variable of the same data type, object
variables are quite different from other variables. That's because an object variable does not contain the
value of the object, it contains a reference (or “pointer”) to the memory where the value is stored. For
example, if we declare a Location variable:

Dim My _loc As Location

This statement creates a pointer, My _loc, to an object of the Location Class. However, at this time, the
My _loc object variable has not allocated any storage for the value of the object and so its pointer is set to
“Nothing”. If you attempt to access a member of My_loc at this time, an error would be generated. In
general, before an object can be used, you must either allocate memory to the pointer (see below), copy
a pointer to an existing value or call a method that returns a value pointer.

The standard way of creating (“allocating”) an object value is by using a New clause. This clause may
appear in a Dim statement or in an assignment statement and has the following syntax:

New class_name
where class_name is the name of the class for which you want to create an object value.

For example, the following three cases all declare a location object variable and allocate a Location
Object value for it.

Dim My _loc As New Location " Create new location value
Or
Dim My _loc As Location = New Location " Same as above
Or
Dim My _loc As Location " Declares variable only
My_loc = New Location " Creates the location value

In general, if you are unsure of whether to allocate a data block or not, you should probably go ahead and
allocate using the New clause. Using New unnecessarily will be somewhat less efficient, but GPL
automatically takes care of managing allocated object values and so memory is never lost (i.e. you
cannot create a memory “leak”).

4.5. Copying Object Variables and Values

Since an object variable is a pointer to a value, the following simple assignment statement does not copy
the value of an object, it copies an object pointer:

My_loc = Another_loc

At the conclusion of this instruction, My _loc and Another_loc both point to the same object
value. Furthermore, if My_loc was the only pointer to a different object value, that object value will have
been deleted (“deallocated”).

This use of pointers allows some sophisticated programming techniques, but it can also be
confusing. For example, after the assignment statement above, changing a property of either My _loc or
Another_loc will alter the property as seen by the other object. For example:

11

The Guidance Programming Language

Dim My _Locl As New Location " Create new location value
Dim My _Loc2 As Location " Does not create value

Dim tmp As Double

My_Locl.X = 10

My_Loc2 = My _Locl " Both Loc2 and Locl now

" have the same value pointer
tmp = My_Loc2.X " tmp gets the value 10
My_Locl.X = 20
tmp = My_Loc2.X " tmp now gets the value 20

45.1. Clone Method

Many classes include a Clone method to create an exact copy of an object. The value of the Clone
method is a new object value that is the same as the referenced object. When this value is assigned to a
variable, it is independent of the original object value.

For example:

Dim My_Locl As New Location " Create new location value
Dim My _Loc2 As Location " Does not create value
Dim tmp As Double

My_Locl.X = 10

My Loc2 = My _Locl.Clone " Loc2 gets a copy of Locl
tmp = My_Loc2.X " tmp gets the value 10
My_Locl.X = 20

tmp = My_Loc2.X " tmp still gets the value 10

4.5.2. Nothing

The keyword Nothing is a built-in function that returns an object with no value. If you assign Nothing to
an object variable, its previous pointer is removed and any attempt to access the variable results in an
error. When an object variable is newly declared its value is Nothing unless a New clause was specified.

Assigning Nothing to an object variable releases the memory associated with the object value, provided it

is not being used elsewhere.

4.6. Objects as Procedure Arguments

Like other variables and values, object values may be passed as procedure arguments. Object values
are always passed as pointers, so the operation of ByVal and ByRef is a little different from that of other
arguments.

4.6.1. ByVval

When an object value is passed ByVal, a pointer to the object value is passed to the called
procedure. That means that changes made to the value via the called procedure parameter are seen by
the caller. But changes made to the variable are not seen by the caller.

For example:

Sub My _Sub (ByVval Loc As Location)

Loc.X = 20 " Changes original value
Loc = New Location " Create new value locally
Loc.X = 30 " Changes local value

End Sub

12

The Guidance Programming Language

Sub Main(Q)
Dim Locl As New Location " Create new location value
Dim Loc2 As Location " Does not create value
Dim tmp As Double
Loc2 = Locl Copy value pointer

My_Sub (Locl)

tmp = Locl.X

tmp = Loc2.X
End Sub

Pass pointer to Locl value
Gets 20 from original value
Gets 20 from original value

4.6.2. ByRef

When an object value is passed ByRef, a pointer to the object variable is passed to the called
procedure. That means that changes made to either the value or the variable via the called procedure
parameter are seen by the caller.

For example:

Sub My_Sub (ByRef Loc As Location)
Loc.X = 20 * Changes original value
Loc = New Location ® Caller variable changed

Loc.X = 30 " Changes new value
End Sub
Sub Main(Q)
Dim Locl As New Location * Create new location value
Dim Loc2 As Location * Does not create value
Dim tmp As Double
Loc2 = Locl " Copy value pointer
My_Sub (Locl) " Pass pointer to Locl variable
tmp = Locl.X " Gets 30 from new value
tmp = Loc2.X " Gets 20 from original value
End Sub

4.7. User-Defined Classes

In addition to using the built-in classes, users can define their own classes within GPL. User defined
classes are a very powerful feature that can be of assistance is organizing a GPL project. However, for
programmers that are not comfortable with object oriented programming, user defined classes do not
need to be used and this section can be skipped. More traditional arrays of numeric and string variables
are supported in GPL and can be utilized to implement a complete application.

A user class definition begins with a Class statement and ends with an End Class statement. A class
may be defined at the top level of a file, within a module, or within another class. User-defined classes
serve as a template for objects that contain arbitrary variable fields and are associated with procedures
that create and modify the objects.

Class variables, procedures, and nested classes can be declared as either Public or Private. By default
these items are all Private. A Private item may not be referenced outside of the class in which it is
declared. A Public item may be referenced outside of a class by using the syntax:
class_name.item_name or object_name.item_name.

4.7.1. Class Variables

By default, variables declared within a class are templates for fields within objects of that class.
Independent copies of these variables are found in each object of the class and do not exist outside of an

13

The Guidance Programming Language

object. If a non-shared class variable has an initializer, that field is set to the initializer value whenever an
object is created.

If a class variable is declared Shared, only a single copy of the variable exists and is accessed
independently of any objects. A Public Shared variable is normally referenced by the syntax:
class_name.item_name, to emphasize that it is associated with the class and not the object. A Public
Shared variable may also be accessed by the syntax: object_name.item_name which results in the same
single value being referenced. The second syntax example should be avoided to prevent confusing it with
a non-shared variable. If a Shared class variable has an initializer clause, the initialization occurs once
when the main thread starts.

An internal Sub procedure named _Init is automatically generated to perform shared variable
initialization. An internal Sub procedure named _New is automatically created to perform initialization
when a new object is created. Do not attempt to create procedures with these names.

4.7.2. Class Procedures

Sub, Function, and Property procedures may all be members of a class. By default, procedures
declared within a class are associated with an object of that class. They are invoked by the syntax:
object_name.procedure_name. Within such procedures, fields and other procedures in the class may be
referenced without specifying object_name as a prefix. Instead, the object that was referenced when the
procedure was initially called is assumed.

If a class procedure is declared as Shared, it is not associated with any object, and may be invoked
simply as class_name.procedure_name. Since there is no object associated with this procedure, it cannot
reference non-shared fields or class procedures unless it explicitly includes an object_name as a prefix.

In the example below, the variable count is a field within the class cc. The procedure Main creates a hew
object, aa, of class cc and sets its count field to 5. When the Inc_count procedure is called, it is passed
the object aa. When Inc_count executes, its references to count are actually references to the field count
within the passed aa object.

Public Class cc

Public count As Integer " Count is a field in a cc-class
obj

Public Sub Increment

count = count+1 Inc count field in the current

obj

End Sub
End Class

Sub Main(Q)
Dim aa As New cc
Dim bb As New cc
aa.count = 5
aa. Increment
bb.count = 20
bb. Increment
Console.WriteLine(aa.count)
Console.WriteLine(bb.count)
End Sub

Creates a new object of class cc
Creates a new object of class cc
Sets count field in the object aa
Calls Sub Increment for object aa
Sets the field count in object bb
Calls Sub Increment for object bb
Writes 6

Writes 21

Property procedures improve readability by allowing assignment statements to call procedures that get
and set data values. Reading a Property value is very similar to calling a function that returns a value.
Writing a Property value looks like an assignment statement. Read-only properties cannot be written,
and write-only properties cannot be read.

14

The Guidance Programming Language

A Property definition must contain a get block (that begins with a Get statement and ends with an End

Get statement) or a set block (that begins with a Set statement and ends with an End Set statement) or
both. When a Property value is read, the get block procedure is executed. When a Property is written,

the set block procedure is executed.

In the example below, the Property Size is defined to get and set the internal field value size_in.
Additionally, the Set block clips the value to make sure that size_in is always in the range 0 to 10. Since
size_in is declared as Private, it cannot be changed directly from the Main procedure.

Public Class cc
Private size_in As Integer " size_in is field in cc-class
Public Property Size As Integer
Get
Return size_in ® Simply return the field value
End Get
Set (value As Integer)
IT value > 10 Then
value = 10
Elself value < 0 Then

value = 0
End If
size_in = value * Set clipped value in field
End Set
End Property
End Class
Sub MainQ)
Dim aa As New cc " Creates a new object of class cc

Dim ii As Integer

aa.Size = 20 * Calls the Size Set Property

ii = aa.Size * Calls the Size Get Property

Console.WriteLine(ii) * Displays value 10

aa.size_in =5 * Invalid since size_in is Private
End Sub

4.7.3. Me Object

When a non-shared class procedure is called, it is automatically associated with an object. This object is
used implicitly whenever a non-shared procedure or field from the current class is referenced. This
associated object may be accessed directly by the built-in object Me. This object always has the type of
the current class. You can use the Me object when calling procedures that require an object as a
parameter. If you attempt to use Me in a shared procedure, or one not associated with a class, an
exception occurs.

4.7.4. Constructors

When an object is created with a New keyword, all fields in the new object are normally set to 0 (for
numeric fields), empty (for string fields), and undefined (for object fields).

If a Sub procedure named New is defined for a class, it is automatically called whenever a new object is
created. The New procedure may include an argument list. There may be multiple overloaded New
procedures, each with a different argument list.

For example:

Public Class cc

Public count As Integer " Count is field in cc-class
Public Sub New

count = 25 " Set count to 25
End Sub

15

The Guidance Programming Language

Public Sub New (value As Integer)
count = value

End Sub
End Class

Sub MainQ

Dim aa As New cc
Dim bb As New cc(15)

Console.WriteLine(aa.count)
Console.WriteLine(bb.count)

End Sub

4.8. Limitations

Calls first New procedure
Calls second New procedure
Writes 25
Writes 15

All objects in GPL must have an explicit class specified. You cannot simply declare a variable as type
Object. That means that late binding of objects is not supported.

5. Arithmetic Operations

5.1. Arithmetic Expressions

The following table documents the order in which elements of an arithmetic expression are evaluated (i.e.
the order of precedence). The operations are presented in their order of precedence starting with the
highest precedence, that is, those elements that are evaluated first. For operators that have an equal
precedence, elements are evaluated left-to-right. Parentheses can be used to change the order of
evaluation. Operations within parentheses are always evaluated before operations that are outside of the
parentheses.

Operation

Symbol

Notes

Exponentiation

Raises a value by a specified power. For
example “x * 3" cubes the value of x. Powers
have to be integer numbers if the number
being operated on is negative. Otherwise,
powers can have fractional parts.

Unary negation

This is a negative sign in front of a variable or
constant that does not indicate a subtraction
operation. For example, 2 * -4 is valid and
produces a value of —8.

Multiplication/division

This indicates the standard multiplication and
division operations. For division, even if the
divisor and the dividend are integer values,
the result is computed as a real number with
a fractional part.

Integer division

This indicates an integer division

operation. Independent of the data type for
the divisor and dividend, the result is
truncated to an integer number. For example,
“2.3\ 2" yields a value of 1.

Modulus calculation

Mod

Computes the modulus of two numbers. For
“x Mod y”, this is equivalent to dividing x by y

16

The Guidance Programming Language

and returning the remainder. For example,
“13.3 Mod 2" is equal to 1.3.

Addition/subtraction

Standard addition and subtraction

operations. Automatically converts integer
values to floating point and computes the
result in floating point. If the value is stored
into an integer variable type, the resulting
answer is converted to integer before storage.

String concatenation

+oré&

Either of the two symbols can be used to
indicate string concatenation. However, the
use of "&" is preferred in place of "+" to
clearly specify a string concatenation
operation instead of nhumerical addition.

Arithmetic bit shift

<<, >>

These are arithmetic shift operations and not
bit rotations or logical shifts. For left shifts, a
0 is always shifted into the low-order bit. For
right shifts, for positive numbers a 0 is shifted
into the high-order bit and a 1 is shifted in for
negative numbers.

Relational comparisons

:1 <>! <1 >! <:!
>= Is

The first six relational operator symbols

represent “equal to”, “not equal to”, “less
than”, “greater than”, “less than or equal to”,
and “greater than or equal to”. The operands
to the left and right of these relational
operators can either both be numerical or
string values. The Is operator determines if
two object references refer to the same

object. For example "objectl Is Nothing".

Logical NOT

Not

Converts a False (=0) value to True (-1) and
any True (<>0) value to False (0).

Logical or bitwise AND

And, AndAlso

Performs a logical AND operation unless
either of the operands is not a Boolean value,
in which case, a bitwise operation is
performed. All operands of And are always
evaluated even if an earlier operand has
already decided the result. AndAlso
prematurely stops evaluation if the result is
already False. The following illustrates the
logical AND operation:

True And True -> True

True And False -> False
False And True -> False
False And False -> False

Logical or bitwise OR

Or, OrElse

Performs a logical OR operation unless either
of the operands is not a Boolean value, in
which case, a bitwise operation is

performed. All operands of Or are always
evaluated even if an earlier operand has
already decided the result. OrElse
prematurely stops evaluation if the result is
already True. The following illustrates the
logical OR operation:

17

The Guidance Programming Language

True Or True -> True

True Or False -> True

False Or True -> True

False Or False -> False

Performs a logical Exclusive Or operation
unless either of the operands is not a Boolean
value, in which case, a bitwise operation is
performed. The following illustrates the
logical XOR operation:

Logical or bitwise XOR Xor

True Xor True -> False
True Xor False -> True
False Xor True -> True
False Xor False -> False

5.1.1. In general, most arithmetic expressions evaluation with GPL is performed in double precision
floating point. For example, when two numbers are added together, they are first converted to Double’s if
necessary and then the addition operation is performed. The results of expressions are converted to the
appropriate data types when a variable is assigned a value. Because of this, GPL generally executes
more quickly when variables are declared as Double’s than the other types of numeric values.

5.2. Arithmetic Functions and Methods

The following tables summarize the standard arithmetic and trigonometric operations that are provided in
GPL. As a convenience during editing, the operations within the first table are provided as methods of
the Math Class. This allows programmers to display a pick list of the Math methods and easily see all of
operations that are available. The second table documents functions that are not part of the Math

Class. These functions are provided in this manner for compatibility with other Basic Languages.

As is standard in GPL, conversions between different arithmetic types, e.g. Integer, Single, Double, are
automatically performed as required. So, it is not necessary to have different variations on these
methods and functions to deal with the different possible mixes of input parameter data types. Also,
these methods and functions generally produce results that are formatted as Double’s. Results are
automatically converted to smaller data types as necessary, e.g. Double -> Integer, and will not generate
an error so long as numeric overflow does not occur.

For more information on these methods and functions, please see the Reference Documentation section.

Math Methods Description
Math.Abs(expression) Returns the absolute value of any arithmetic expression.
Math.Acos(cosine) \I?aelhuerns the angle that corresponds to a specified cosine
Math.Asin(sine) Returns the angle that corresponds to a specified sine value.
Math Atan (tangent) \I?aelhuerns the angle that corresponds to a specified tangent
Math.Atan2(sine_factor, Returns the angle that corresponds to the quotient of two
cosine factor) values.

Returns the smallest integer number that is greater than or
equal to a value.
Math.Cos(angle) Returns the cosine of a specified angle.

Math.Ceiling(value)

18

Math.Cosh(angle)

The Guidance Programming Language

Returns the hyperbolic cosine of a specified angle.

Math.E

Returns the natural logarithmic base constant.

Math.Exp(exponent)

Returns the natural logarithmic constant, e, raised to a
specified power.

Math.Floor(value)

Returns the largest integer number that is less than or equal
to a value.

Math.Log(value)

Returns the natural logarithm (base-e logarithm) of a
specified value.

Math.Log10(value)

Returns the base-10 logarithm of a specified value.

Math.Max(value 1, value 2)

Returns the larger of two values.

Math.Min(value 1, value 2)

Returns the smaller of two values.

Math.PI

Returns the constant 1.

Math.Pow(base, exponent)

Returns a specified base value raised to a specified power.

Math.Sign(value)

Returns a number that indicates the sign of a specified value.

Math.Sin(angle)

Returns the sine of a specified angle.

Math.Sinh(angle)

Returns the hyperbolic sine of a specified angle.

Math.Sqrt(value)

Returns the square root of a value.

Math.Tan(angle)

Returns the tangent of a specified angle.

Math.Tanh(angle)

Returns the hyperbolic tangent of a specified angle.

Built-in Functions

Description

Fix(number)

Returns the integer portion of any numeric type by truncating
towards zero.

Int(number)

Returns the integer portion of any numeric type by truncating
towards negative infinity.

Rnd(seed)

Returns a pseudo random number.

6. Strings and String Expressions

String variables, assignment statements, and expressions provide the means for storing and
manipulating text within GPL. As such, Strings are also the primary means for transferring data in and
out of the system via the serial communications ports, the file system, and the Ethernet interface.

6.1. String variables store a series of ASCII characters and can be of arbitrary length. However, String
operations have been optimized to execute most efficiently on Strings that are 128 characters or less in

length.

6.2. String constants must be delimited by double quote marks, e.g. "Hello world", and can at most be
128 characters in length. To embed a double quote mark within a String constant, enter two double
guote marks in a row, e.g. "Tom said, ""Hello world""".

6.3. As with other variables, String arrays are supported and the values of procedure level String
variables can be initialized in DIM statements. For example,

Dim name As String = "Charlie™

19

The Guidance Programming Language

6.4. A number of easy-to-use functions are provided for converting between String values and
numerical values, e.g. CStr, CDbl, Cint. Each of these built-in functions was described earlier in the
section on Basic Data Types.

As a convenience, GPL automatically converts a String value to a Double whenever a numerical value is
expected and a String is encountered instead. For example, the following statements are legal:

Dim a As Double
a=2.34 + "1.01" " Legal. a will be equal to 3.35

However, it is generally better practice to utilize the explicit conversion routines rather than relying upon
the automatic conversions. The automatic conversions can result in some computations whose results
may not be clear.

6.5. In most cases, when a String value is required as an input, a String expression can be provided. A
String expression can consist of a String variable, constant, function or method or a concatenation of
two or more of these String elements.

6.6. Two or more String elements can be concatenated together by utilizing the concatenation operator,
"&". Also, for compatibility with other Basic compilers, the "+" can alternatively be used to indicate
concatenation. However, given the automatic String to numeric conversion features of the language, the
use of the "+" can make it less obvious whether a statement is intended to produce a String or a numeric
result. Therefore, the use of the "&" concatenation operator is recommended over the "+".

The following is an example of String concatenation.

Dim s1, s2 As String
sl "Joe"s"
s2 sl & " balance: " & CStr(10.2) " s2 = "Joe"s balance: 10.2"

6.7. Since String values are often generated by appending additional text on to the end of the value of a
String variable, for computational efficiency, the concatenation assignment operator is supported. For
example,

sl &= " more" is equivalent to sl = s1 & " more"

The advantage of the concatenation assignment operator is that appended text is directed added onto the
end of the variable's value. In the standard assignment statement, the value, s1, is copied to an
intermediate variable where it is concatenated with the appended String value, " more". The resulting
value then replaces the original value of the variable.

6.8. The values of two Strings can be compared using the String.Compare method. In addition,
Strings can be compared using the standard arithmetic relational comparison operators (=, <>, <, >, <=,
>=). Comparisons performed using the relational operators are always performed case sensitive, i.e. “A”
is not equal to “a”. This is equivalent to specifying “Option Compare Binary” in some Basic compilers. To
perform case insensitive comparisons, use the Compare method or force both String values to be upper
or lower case.

6.9. Internally, String variables are implemented using many of the same procedures as those that
apply to Objects. Consequently, many of the basic string manipulation operations are provided as
methods and properties that can be applied to String variables. However, unlike other built-in Objects,
when a String variable is created, it automatically has its data storage allocated. So, the use of the New
gualifier is not needed in connections with String variables and is not permitted.

20

The Guidance Programming Language

The following table summarizes each of the String methods and properties.

Member

Type Description

Compares the values of two Strings in either a case

String.Compare Method s : o
sensitive or case insensitive manner.
Searches for an exact match of a substring within

string.IndexOf Method the string variable and returns the starting position if
found (0-n).

string.Length Property Returns the number of characters in the String.
Divides the string variable value into a series of

string.Split Method substrings based upon a specified separator
character and returns the array of substrings.
Returns a substring of the string variable starting at

string.Substring Method a specific character position and with a specified
length.

string. ToLower Method Returns a copy of the string with all lower case
characters.

string. ToUpper Method Returns a copy of the string with all upper case
characters.

. . Trims off characters or white space from the start

string.Trim Method . .
and end of a String variable value.

string. TrimEnd Method Trlms_ off characters or white space from the end of
a String variable value.

string. TrimStart Method Trims off characters or white space from the start of

a String variable value.

6.10. For compatibility with older Basic compilers, the following String functions are provided. In many
instances, very similar functionality is provided by the String Members listed in the previous table.

Built-in String Functions

Description

Asc(string)

Converts the first character of a String to its equivalent ASCII
numerical code.

Chr(expression)

Given a numerical ASCII code, a String that consists of the
equivalent ASCII character code is returned.

Format(expression, format_s)

Converts a numerical value to a String value based upon a
specified output format specification.

big_endian)

FromBitString (string, type,

Extracts a number that has been packed in its internal bit
format into a String and returns the value of the number.

Instr(start, string_t, string_s)

Searches for an exact match of a substring within a String
expression and returns the starting position if found (1-n).

LCase(string)

Returns a String value that has been converted to lower
case.

Len(string)

Returns the number of characters in a String.

Mid(string, first, length)

Returns a substring of the string starting at the first character
position and consisting of length number of characters.

big_endian)

ToBitString (expression, type,

Converts the value of an expression to a specific numeric
type and returns the internal bit representation of the number
packed into a String value.

UCase(string)

Returns a String value that has been converted to upper
case.

21

The Guidance Programming Language

7. Assignment Statements

The basic value assignment statements have the following form:

numeric_variable = arithmetic_expression " Comment
or
string_variable = string_expression " Comment

where the arithmetic_expression can be arbitrarily complex and can consist of variable values and
functions inter-related by the arithmetic operations described in the previous section, and
string_expression can be a string variable, string function, string valued property, string constant or
concatenated string value.

7.1. For all arithmetic assignment statements, the result of the statement is always converted to the data
type of the variable being assigned the new value. For example:

Dim a, b As Single, c As Integer

a=2.25 * Assigned floating point value

b =3.5 " Assigned floating point value
c=a*hb * Result of 7.875 rounded and stored
as 8

7.2. In addition to the standard assignment statements (e.g. x=2), assignment operators are provided that
perform an operation on a variable value and store the result back into the variable value. For example:

X *= 3 is equivalent to x = x * 3

The following table contains the list of assignment operators and their equivalents.

Assignment operator Sample Use Equivalent Code

= Qperator X=y X=X"y

= Qperator X=y X=X*y

/= Operator XI=y X=x/y

\= Operator x\=y Xx=x\y

+= Operator X+=y X=X+Yy

-= Operator X-=V X=X=YV
<<= Operator X <<=y X=X<<y
>>= Qperator X >>=y X=X>>y

&= Operator X &=y X=X&Y

In addition to simplifying and clarifying complex program statements, the use of the assignment operators
can be more efficient especially when the variable or property that is being assigned the new value has a
complex array index or other specification or long string values are being concatenated. This is due to
the fact that the full variable or property specification only has to be evaluated once to obtain the memory
address of its value.

22

The Guidance Programming Language

8. Control Structures

The statements described in this section alter the sequential execution of instructions within a procedure,
i.e. they alter the flow of control. For example, these statements conditionally execute blocks of
statements, repeatedly execute blocks of statements a fixed number of times or repeatedly execute
blocks of statements until a condition is satisfied.

8.1. GoTo Statements

This instruction executes an unconditional branch and continues execution at a specified labeled
statement.

GoTo label

A label must either conform to the conventions for a variable name (e.g. label3) or an integer literal (e.g.
1000). To label an instruction, the label is placed first on the line followed by a colon (:) followed by any
standard instruction.

In general, GoTo instructions can make programs more difficult to understand. So, whenever possible,
other control structures should be used in place of GoTo’s.

8.2. If...Then...Else...End If Statements

This control structure tests one or more expressions and conditionally executes at most one block of
statements.

IT condition Then
if_statements

ElselT elseif_condition Then
elseif_statements

Else
else_statements

End If

This control structure first tests the condition to determine if it is True (<>0) or False (=0). If True, the

if _statements are executed and the remainder of the statements down to the End If are skipped. If False,
the if_statements are skipped and the first Elself or Else, if present, is processed. If an Elself clause is
present, its elseif_condition is tested and, if True, the associated elseif statements are executed after
which execution continues after the End If. Otherwise, the elseif_statements are skipped and the next
Elself or Else is processed. If all conditional tests fail and an Else is present, the else_statements are
executed.

8.2.1. Anf...Then can contain several or no Elself clauses. If present, these must be specified before
the optional Else clause.

8.2.2. AnIf...Then can only contain a single optional Else clause.

8.2.3. Since True is defined to be <>0, any arithmetic expression that evaluates to <>0 will be
interpreted as a True condition.

8.2.4. For simple tests, this statement can be reduced to a single line format: If...Then statement.

8.3. For...Next Statements

23

The Guidance Programming Language

This control structure executes a sequence of instructions a fixed number of times.

For variable = initial_value To final_value Step increment
for_loop_statements
Next variable

This control structure begins by setting the variable to the initial_value. The variable can be any numeric
type, i.e.. Byte, Integer, Short, Single or Double. Array variables as well as object and structure fields
are also permitted. However, object and structure properties are not permitted.

If the initial_value does not exceed the final_value, the for_loop_statements are executed

once. However, if the initial_value exceeds the final_value, the for_loop_statements are skipped and
execution continues at the statement following the Next instruction. If the for_loop_statements are
executed, execution proceeds until the Next instruction is encounter. When the Next statement is
executed, the increment is added to the variable and its value is compared again to the final_value. So
long as the final_value is not exceeded, the for_loop_statements are executed again and the process is
repeated.

8.3.1. The initial_value, final_value, and increment can all be arbitrarily complex arithmetic
expressions. However, these expressions are only evaluated when the For statement is executed and
their values are saved for use by the Next statement. Therefore, if the values of these expressions
change during the execution of the For loop it does not alter the saved values. Since these expression
are only evaluated once, the For loop is generally more efficient that other looping methods.

8.3.2. The increment value is optional can be positive or negative. If positive, looping terminates when
the variable’s value is greater than the final_value. If negative, looping terminates when the variable’s
value is less than the final_value. If not specified, a value of 1 is assumed.

8.3.3. The For loop can be prematurely terminated by executing an Exit For statement or a GoTo
statement that branches outside of the For loop.

8.4. While...End While Statements

This control structure tests a condition and, if True, executes a block of statements repeatedly until the
condition is False.

While test_expression
while_statements
End While

This control structure begins by evaluating the test_expression. If the expression value is True (<>0), the
block of while_statements is executed. When the End While is encounter, the test_expression is
evaluated again. If the test_expression is still True, the while_statements are executed again. This
sequence is repeated so long as the test_expression remains True. As soon as the test_expression tests
False (=0), the while_statements are skipped and execution continues at the statement following the End
While.

8.4.1. If the test_expression is False when the While begins execution, the while_statements are
skipped and are not executed.

8.4.2. The While loop can be terminated before the conclusion of the while_statements by executing an
Exit While statement or a GoTo statement that branches outside of the While loop.

8.5. Do...Loop Statements

24

The Guidance Programming Language

This control structure bounds a block of instructions that are repeatedly executed so long as a specified
expression evaluates to True or until the expression value becomes True.

Do While | Until condition
statements
Loop
Or
Do
statements
Loop While | Until condition

8.6. Select...Case...End Select Statements

This control structure executes one of several blocks of statements based upon matching a numeric or
String expression value. This control structure is similar to the If...Then...Elself statements in that a
series of values are compared to determine the statements that are executed next. However, this control
structure is more efficient and convenient than a series of If statements if a single value is to be
compared to multiple possible values.

Select match_value
Case test_expression,..., test_expression
case_statements
Case Else
else_statements
End Select

The match_value is evaluated once and then sequentially tested against each test_expression specified
in a series of Case statements. When a matching test_expression value is found, the associated
case_statements are executed. Following the execution of the appropriate case_statements, execution
continues at the statement following the End Select. If no test_expression is matched and a Case Else is
present, the else_statements are executed. If no test_expressionis is matched and a Case Else is not
defined, none of the case_statements are executed and execution continues after the End Select.

8.6.1. The match_value can be a general numeric or String expression and can evaluate to any of the
basic arithmetic data types (e.qg. integer, real number, byte) or a String type.

8.6.2. Any number of Case statements can be included. Each Case statement can be followed by one
or more numeric or String test_expression’s.

8.6.3. Each Case test_expression must take one of the following forms:

8.6.3.1. A general numeric expression, e.g. 2, a+b.

8.6.3.2. A general String expression, e.g. “blue”, stgl & “ab”

8.6.4. If atest_expression does not match the data type of the match_value, the expression is
automatically converted to the appropriate type.

8.6.5. Some example Case statements are as follows:

Case 1, 3, 5, 7, 11 * First prime numbers
Case ''red", color2, "blue"™ & 'green"

8.6.6. Executing an Exit Select instruction will skip the remaining statements within a group of
case_statements or else_statements. Execution continues at the instruction following the End Select.

25

The Guidance Programming Language

8.7. Nested Control Structures

In general, control structures can be nested within each other to an arbitrary depth and in arbitrary
combinations. For example, a While loop can be embedded within another While loop or an If...Then
clause.

9. Procedures, Delegates and Modules

9.1. Subroutines and Functions

The language includes user-defined subroutine (Sub) and function (Function) procedures. Functions are
identical to subroutines except that a function returns a value and a call to a function can be included in
an arithmetic or string expression. Except as noted in this document, “procedure” or “routine” refer to
both user-defined procedures and functions.

9.1.1. Calling a Procedure

A Function or Sub may be invoked by placing its name as the first item in a statement or by using the
Call keyword. If a Function is invoked in this manner, the returned value of a Function is ignored. In
addition, a Function, but not a Sub, may be embedded in an expression whose type is consistent with
the type returned by the function.

When invoking either a Sub or a Function, parentheses must always be provided around the argument
list, with empty parenthesis supplied if there are no arguments. In VB6, parentheses are required if a Call
is used and forbidden if a Call is not included. In VB.Net, parentheses are only optional for empty
argument lists, although the Visual Studio.Net editor always inserts parentheses.

The following are some valid examples:

Call MyProcedure (1, 2, 3) " (Qalways required for non-null args

MyProcedure (1, 2, 3) * Call is optional
X = 2 * MyFunction (y)
MyFunction(y) * Do not care about the value

9.1.2. Returning from a Procedure

When a procedure is executed, the procedure exits and returns control to the calling routine when one of
the following is encountered:

1. The end of the procedure, marked by an End Function or End Sub statement.
2. An Exit Function or Exit Sub statement, depending on the procedure type
3. A Return statement.

If the top-level procedure exits, execution of its thread is terminated.

The returned value of a Function is specified by either an expression argument to the Return statement
or by assigning a value to the function name as if it were a variable. For example:

Function Test (ByVal x As Double) As Double
If x < 10 Then

26

The Guidance Programming Language

Return x+1 " Exits with a value of x+1
Else

Test = x+2 " Sets the return value to x+2

Exit Function " Exits with the current return value
End If

End Function
9.1.3. Procedure Arguments

All arguments (including arrays and objects) can either be passed to a procedure by value (ByVal) or by
reference (ByRef).

For numeric, Boolean and String types, ByVal means that a copy of the value is made for the called
procedure. The called procedure may freely modify the argument variable without affecting the value in
the calling program. By default, all arguments are passed ByVal.

For numeric, Boolean and String types, ByRef means that a pointer to the variable containing the value
is passed to the called program. Only variables can be passed by reference. When the called procedure
modifies its argument variable, it is actually modifying the value in the calling program.

Passing objects ByVal and ByRef has some subtle differences. In both cases, accessing and modifying
members of the object have the same effect and change the same data. They are different for the case
when you assign directly to the procedure argument. In the ByVal case, you only change the pointer to
the value in the called procedure. In the ByRef case, you change the pointer to the value in the calling
procedure’s object variable.

9.1.4. Not Supported

The language does not support the GoSub statement. This statement allowed an arbitrary line within a
procedure to act as the start of a procedure embedded within a procedure. Also, the language does not
support declaring a procedure as Static. A Static procedure forced all of the local variables of a
procedure to be statically defined such that they retained their values between calls. Variables must be
individually specified as being Static.

GPL does not support Optional procedure arguments, initial argument values, or the ParamArray

keyword. It also does not support passing a Set or Get Property as a ByRef argument.

9.2. Delegates

"Delegates" are a means of indirectly calling a function or subroutine procedure through an object
variable. You can define a Delegate object and then associate a particular function or subroutine
procedure to it. The object can be passed between routines like any other object and finally the
associated procedure can be called.

Delegates may be used to efficiently call a procedure from a table of procedures, based on a numeric
index. They may also be used to pass a call-back procedure to a server process.

The Delegate statement creates a new named class that holds a template for the procedure to be called.
For example, the statement

Delegate Function My template(ByVal argl As Integer) As String

27

The Guidance Programming Language

creates a class with the name My_template that can be used to call Function procedures that accept a
single Integer argument by-value, and return a String value. This statement is only a declaration and
does not do anything except create the My_template class.

Suppose you have two functions:

Public Function fO (ByVal mode As Integer) As String
énd Function
Public Function fl (ByVal mode As Integer) As String
énd Function

You can create an array of Delegate objects that refer to these functions, using the template defined
earlier in the Delegate statement.

Dim del_obj(1) As My_template

del_obj(0) = New My_template(AddressOf f0)

del_obj(1) = New My_template(AddressOf fl)
or

del_obj(0) = New My_ template(*'f0'")

del_obj(1) = New My_template(''f1'")

The function type and arguments for the functions fO and f1 must match the defining Delegate statement
or a compiler error will be issued for by the New statements above.

If you have an index variable whose value is either 0 or 1, it can be used to select which of the two
functions is executed.

str = del_obj(index)(3) " Call fO or f1 with mode = 3
9.2.1. Delegate Statement

The Delegate statement creates a new class that serves as a template for any Delegate objects that are
associated with it. The Delegate statement’s procedure type (Sub or Function), the procedure argument
list, and the Function result type must match any procedures that are later associated with a Delegate
object of this class. You need to have a separate Delegate statement for each variation of procedure type
and argument list. A Delegate statement is similar to creating a new class with the name of the Delegate.
You cannot create a Delegate class for a property method.

For example, the statement

Delegate Function My template(ByVal argl As Integer) As String

creates a class with the name My_template that can be used to call Function procedures that accept a
single Integer argument by-value, and return a String value.

9.2.2. Creating Delegate Objects

Like other objects, a Delegate object must be declared before it can be used. Objects of this type are just
like any other object and can be global, inside a class, or local in a procedure. A typical object variable
declaration is:

Dim del_obj As My_template

28

The Guidance Programming Language

which creates an object variable del_obj that is an instance of the previously declared Delegate named
My_template. Before the object variable can be used, the actual object must be created with a New
procedure using the name of the procedure as a String, or using the AddressOf operator. For example:

del_obj = New My_template('f0')
or
del_obj = New My_template(AddressOf f0)

The parameter list and procedure type of fO must match the template of the Delegate statement for
My _template.

To associate a Delegate object with a non-shared class procedure, you need to provide both the
procedure name and the object instance to the AddressOf operator. You cannot use a String in this
case. The Delegate object saves a pointer to the object instance along with the procedure. For example:

Class My_class
ﬁublic Function My_fn(ByVal mode As Integer) As String

énd Function
End Class

Public Sub Test
Dim my_obj As New My_class " Create an object from My_class
Dim del_obj As My_template
del_obj = New My_template(AddressOf my_obj.My_fn)
" At this point, del_obj refers to my_obj.-My fn
Console.Writeline(del_obj(3)) * Call my_obj._-My_fn(3)

End Sub

9.2.3. AddressOf Operator

The AddressOf operator may be used in the constructor (New clause) when creating Delegate objects.
This operator finds the address of a procedure. If the procedure is a non-shared class procedure, it also
determines the object to be associated with the call. For example:

del_obj = New My_template(AddressOf global_function)

Associates del_obj with a global function that does not depend on any object.

del_obj = New My_template(AddressOf my_object.class_function)

Associates del_obj with the object referenced by my_object and the class member function
class_function. If del_obj is used later to invoke class_function, that function is called with the value of
my_object at the time that del_obj was instantiated.

9.2.4. AddressOf vs. String

When the AddressOf operator is used in a New clause, the compiler finds the name of the procedure
during compilation. When a String containing the procedure name is used in a New clause, the
procedure name must be found during execution of the procedure. So AddressOf is more efficient, but
the String argument is more flexible since a String variable can be used to associate different
procedures with the same Delegate object.

When a New clause contains a String variable, the procedure name must either be a module-level public

procedure, or a top-level class public shared procedure. The String variable must have one of the
following forms:

29

The Guidance Programming Language

e procedure_name
e module_name.procedure_name
e class_name.procedure_name

9.3. Modules

A Module is a named section of code that begins with a Module statement an ends with an End Module
statement. Modules may contain variable declarations, procedures, and class definitions. Modules can
only appear at the top-level of a file. They cannot appear inside of other modules or classes.

9.3.1. Scope of Items within Modules

Modules provide a simple way to group variables, procedures, and classes, without concern about name
conflicts.

Module variables, procedures, and classes can be declared as either Public or Private. By default these
items are all Private. A Private item may not be referenced outside of the module in which it is declared.
A Public item may be referenced outside of a module by using the syntax: module_name.item_name. As
a special case, if item_name is unambiguous within all loaded modules, the module_name. may be
omitted.

All variables declared within a module (and not within a class or procedure) are implicitly Shared, so they
can be referenced within any procedure contained in the module. Consequently, only one copy of each
implicitly Shared variable value can exist. All references to the variable access the same value. If a
variable has any initializer clauses, the initialization occurs once when the main thread for the Module is
started. Const symbols behave the same as variables, except their values cannot be changed once they
are initialized.

9.3.2. Special Initialization Procedures

If a user Sub procedure named Init is defined within a module, it is executed as part of the module
initialization, before the startup procedure begins.

An internal Sub procedure named _Init is automatically generated to perform module-level initialization.
Do not attempt to create a procedure with this name.

10. Exception Handling

In automated systems, it is typically very important that the equipment be able to run unattended for long
periods of time. Since errors and other unexpected events periodically occur, it is critical that the system
be able to automatically field execution exceptions, attempt to correct the problem by responding in an
appropriate manner, and continue execution if at all possible. In GPL, sections of procedures or entire
procedures can be bounded by a Try...Catch...Finally...End Try structure that provides a formal means
to intercept program exceptions and execute specific corrective actions. When an exception is handled in
this manner, information on the type of exception is stored in an Exception Object.

10.1. Try...Catch...Finally...End Try Statements

30

The Guidance Programming Language

In the group of instructions shown below, if an exception of any type occurs when the try_statements are
executed, rather than halting execution and reporting an error, the system automatically stores the
exception information in the exception_object and branches execution to the start of the
catch_statements. The catch_statements can test the exception_object to determine the nature of the
exception and then perform whatever corrective action is necessary. If the try_statements complete
execution without an error or when the catch_statements complete execution after an exception, the
finally_statements are always executed to perform any required cleanup. At the completion of the
finally_statements, regular instruction execution continues at the first statement following the End Try.

Try
try_statements
Catch exception_object
catch_statements
Finally
finally_statements
End Try

10.1.1. A Try structure must contain either a single Catch statement or a single Finally statement or
one of each type of statement. If a Catch statement is specified, it must always include an
exception_object.

10.1.2. Try structures can be nested within each other. For example, a Try structure can be contained
within the catch_statements of another, higher-level Try structure. Also, procedure calls can be
contained within any of the statement blocks including the try_statements. For example,

Public Sub MAIN
Dim excl As New Exception

Try
test()
Console._WriteLine("Test completed™) " Never gets here
Catch excl
Console.WriteLine(""Exception!') " Is executed
End Try
End Sub

Public Sub test()
Dim ii As Integer
inr=1/70 " Generates exception
Console._WriteLine("Inside Test') Never gets here

End Sub

In this sample code, the only output will be "Exception!". This is because the divide by 0 in test generates
an exception, which terminates execution of test. If the call to test in the MAIN routine was not embedded
within a Try, the system would normally halt the execution of the thread and report the error. Since the
call is within a Try block that has a Catch, execution is instead continued at the first instruction within the
Catch block. This feature permits exceptions that occur within arbitrary depths of procedure calls to be
fielded by a single Try structure.

10.1.3 A Try structure with a Finally instruction and no Catch instruction is only useful in a called
procedure when a higher-level calling procedure contains a Try structure with a Catch. When an
exception occurs in the try_statements of a called procedure with no Catch, the finally_statements are
executed before the procedure exits to the higher-level procedure that contains the Catch statement. In
the example above, if the divide by 0 statement was part of a Try block that was followed by a Finally
block, the statements in the Finally block would have been executed prior to returning to the MAIN
routine.

10.1.4 There are special limitations on the use of GoTo instructions in connection with Try structures. A

GoTo contained in the catch_statements can branch execution into the corresponding
try_statements. Also, GoTo's can be contained in the try_statements, catch_statements, and the

31

The Guidance Programming Language

finally_statements so long as the branch is to an instruction within the same block of statements. All
other branching into and out of the Try statement blocks and the main code is not permitted, e.g. you
cannot branch from outside of a Try structure into the try_statements or out of the try_statements into the
finally_statements. For example,

Dim excl As New Exception
Try
retry:

Move.Loc(locl, profilel)
Move.WaitForEOM

Catch excl
If (excl.ErrorCode = -153) Then

profilel.Speed *= .9

GoTo retry " LEGAL BRANCH
End If
GoTo bad_jump * ILLEGALII!
End Try

bad_jump:

10.1.5 If an Exit Try statement is executed in either the try _statements or the catch_statements,
execution branches and continues at the first statement in the finally_statements. Exit Try instructions
are not permitted in the finally_statements.

10.2. Throw Statement

The Throw statement can be used to force an exception within a program at any time. The syntax for this
instruction is as follows:

Throw exception_object

In addition to forcing an exception to halt program execution, the Throw statement is often used within a
catch_statements block to force an exception to be processed by a higher-level Try structure.

10.3. Exception Class and Objects

Whenever an exception occurs, the data that defines the specific type of exception is stored and passed
in Exception Objects. There are two basic types of Exceptions: robot Exceptions and general
Exceptions. Both forms have a numeric property that indicates the basic type of error. In addition, the
robot Exceptions contain information on the robot and axis that is associated with the Exception. The
general Exceptions contain an error code qualifier in place of the robot and axis information.

As with other types of Objects, Exception Objects are defined with a Dim statement or as an argument
to a procedure. When an Exception Object is first created, normally the New token is used to allocate
the data section for the Object.

All of the properties and methods for the Exception Objects are described in detail in the Reference
Documentation section. The following table briefly summarizes this information.

Member Type Description
excention obiAxis Propert Sets and gets a bit mask indicating the robot
ption_ob). perty axes associated with a robot Exception.
exception_obj.Clone Method (I\a/lxectggt(i:iot:a;tr)jeturns a copy of the
exception_obj.ErrorCode Property Sets and gets the number of the error

message.

32

The Guidance Programming Language

exception obi.Message Method Returns the full text string that is generated
ption_ob). 9 based upon the exception obj properties.

exception_obj.Qualifier Property izt:naer:glglze;(s:égfig:lror message qualifier for

. . Sets and gets the Boolean that indicates if an
exception_obj.RobotError Property Exceptiog is a robot or general type.

. . Sets and gets the number of the robot
exception_obj.RobotNum Property associated with a robot Exception.

. . Updates a general (vague) Exception error
exception_obj.UpdateErrorCode | Method cc?de with agmore séec?fic)error nge_

11. Motion and Controller Related Classes

11. Motion and Controller Related Classes

In the previous sections, the features of GPL that were described closely mimic those that are found in
other object orientation variants of the Basic Language. Those features included arithmetic expression
representations, control structures, variable types and declarations, mathematical functions, etc.

In the next sections, the features of GPL that have been added specifically to provide built-in motion
control facilities are described. Consistent with the philosophy of object-oriented languages, these
special features are provided as properties and methods of built-in “Classes”. In some cases, the
Classes are global system classes that simply serve to group features together as an aid in accessing
and understanding these facilities. For global Classes there is a single copy of the Class. The Math
Class that was described earlier is a good example of a global system class. In other cases, the classes
have multiple instances (objects) that allow programs to have multiple copies of the objects, each with
their own independent set of values for properties and methods. For example, in a Visual Basic program,
the “Textbox” is a good example of the use of objects. An application can have multiple Textboxes each
with different colors and sizes and other visual effects. In a motion application, robot locations are
represented as objects to allow an application to store multiple robot and object positions, each with its
own special properties.

The following table describes the motion control specific classes that are included in GPL. Each of these
classes is discussed in more detail in the following sections.

Motion Control Class Description

Signal Class (Global) Rgads and writes digital, analog and other simple means
of input and output

Location Class and Objects Defines positions and orientations of the robot and objects
Defines sets of parameters that specify the trajectory to be
followed when moving between Locations.
Provides the basic methods for executing a motion
between Locations using Profiles.
Defines robot and part reference frames that can
RefFrame Class and Objects automatically alter the total (absolute) positions and
orientations of Locations.
Provides access to general facilities provided by the
Controller Class (Global) motion control hardware such as power control, timers,
etc.

Profile Class and Objects

Move Class (Global)

33

The Guidance Programming Language

Provides access to the attributes and properties of each

Robot Class (Global) robot such as their current position and homing methods.

For many simple pick and place operations, only the first four basic classes need be utilized, i.e. the
Signal, Location, Profile, and Move Classes. The facilities provided by the more advanced Classes
(RefFrame, Controller, and Robot) can be brought into play as an individual becomes more familiar with
the system or as applications become more complex.

11.1. Signal Class

The global Signal Class provides access to the hardware features of the Guidance Control System that
allow GPL programs to interface to other equipment in the work cell using common, simple

techniques. These interfaces include “digital input and output (1/0)” signals and “analog 1/0”

signals. Digital and analog I/O signals permit GPL programs to coordinate the operation of the robot with
other equipment using go/no-go semaphores and to interface to various simple sensors.

These hardware interfaces serve as global resources to all threads and are therefore represented by a

global class. To access these interfaces, it is not necessary to create an instance of the class; you can
refer to the Signal Class directly. For example, to read the value of the first digital I/O signal you could
execute the following:

Dim signal_state As Boolean
signal_state = Signal .DI0(1)

All of the properties and methods for the Signal Class are described in detail in the Reference
Documentation section. The following table briefly summarizes this information.

Member Type Description

Sets and gets the values of the analog input and

Signal.AIO Property output channels.

Sets and gets the values of the digital input and output

Signal.DIO Property hannels

11.2. Location Class and Objects

The Location Class and its instances (“Location Objects” or just “Locations”) are the fundamental
means for specifying robot and part positions and orientations in GPL. Each Location Object contains
data that defines: a position and orientation; special robot configuration information specific to the
geometry of the robot to be used; and clearance data that define a safe position by which the Location
can be approached.

11.2.1. There are two basic types of Location Objects: Cartesian Locations and Angles Locations.

11.2.1.1. A Cartesian Location stores a robot or part position and orientation in Cartesian
coordinates. That is, positions and orientations are represented as X, Y, and Z displacements and
rotations in a Cartesian coordinate system.

This is a very intuitive representation and has the advantage of representing positions and orientations in
a manner that is independent of a robot's geometry. When a Cartesian Location is specified as a

34

The Guidance Programming Language

destination for a robot motion, the system automatically utilizes its built-in knowledge of the robot’s
geometry (i.e. its kinematics) to convert this Cartesian position into an equivalent set of robot axes
positions. Furthermore, if the kinematic model of the robot includes corrections for manufacturing
tolerances (e.g. non-perpendicularity of axes, deviations in link lengths), the Cartesian Locations will be
automatically corrected for these variances.

In addition to containing a position and orientation, a Cartesian Location also has an optional pointer to
a reference frame object (RefFrame). If RefFrame is specified, the Cartesian position and orientation is
understood to be relative to the reference frame. When such a Location is specified as a destination for
a robot motion, GPL automatically combines the Cartesian Location’s position and orientation with the
reference frame to compute the absolute coordinates for the robot’s destination.

The use of relative coordinates and reference frames is a very powerful technique since it allows related
positions and orientations to be moved as a group. For example, all of the IC chips on a PC board or all
of the sample tubes in a tray can be defined relative to a reference frame. If the PC board or the tray is
misaligned, the position and orientation of the reference frame can be updated and the absolute values of
all of the associated Locations will automatically be corrected as well.

For even greater flexibility, a reference frame can itself be defined relative to another reference frame.

11.2.1.2. An Angles Location stores a robot position as a set of axes position values. This is the
traditional method of representing robot locations and was utilized extensively prior to the introduction of
kinematic models. It consists of one axis position value for each degree-of-freedom of the robot.

This method has the benefit of fully and uniquely defining a position of a robot. However, there are
several disadvantages of this method relative to the Cartesian representation. For one, if the robot has
serial linkages or rotary axes for determining the position of the tool, it is often difficult to intuitively
determine how to change the axes positions to effect a desired change in the position or orientation of the
robot’s tool. Secondly, the use of axes positions makes application programs non-portable between
robots with different geometries or even the same geometry but different sizes. Finally, while this
representation is sufficient for describing the position and orientation or a robot, it cannot be easily used
to define arbitrary positions and orientations of parts and part relationships within the workspace.

The storage of axes positions has been included for completeness and does have its uses. However, it is
recommended that Cartesian Locations be applied whenever possible.

11.2.1.3. In order to distinguish the type of data stored in a Location, a “Type” property is
provided. This indicates if the object is an Angles Location or a Cartesian Location. If the Location is
a Cartesian type, it can also have an optional pointer to a RefFrame Object.

11.2.2. For most common operations that require the position and orientation of a Location Object, the
data of interest is referred to the “total position” or “position” of the Location. The “total position” or
“position” is synonymous with the following:

11.2.2.1. For Cartesian Locations without a reference frame, the position and orientation stored in the
Location.

11.2.2.2. For Cartesian Locations with a reference frame, the combination of the position and
orientation stored in the Location with the position and orientation of its reference frame.

11.2.2.3. For Angles Locations, the stored axes positions.

35

The Guidance Programming Language

11.2.3. For some computations, it is convenient to access the Cartesian position and orientation stored in
a Cartesian Location while ignoring the optional reference frame. To distinguish this value from the
“total position”, this data is referred to as the Location’s “position with respect to the reference frame”
(PosWrtRef) whether or not a reference frame is specified. The PosWrtRef property is not meaningful
for Angles Locations.

11.2.4. Throughout GPL, Cartesian positions and orientations are internally stored as a sparse 4 by 4
matrix called a “homogeneous transformation”. This matrix represents the three positional degrees-of-
freedom and the three rotational degrees-of-freedom needed to fully specify a robot or part position and
orientation in Cartesian coordinates. Homogeneous transforms have several computational advantages
and are used to store the “total position” of Cartesian Locations, PosWrtRef values, reference frames
positions and orientations, and during Cartesian Location position and orientation

computations. However, while this representation has computational benefits, entering the values for the
elements of a 4 by 4 homogeneous transformation matrix is not very convenient.

To simplify data entry, transformation values are converted to X, Y, and Z position displacement
components and three “Euler angles”. The three Euler angles consist of a rotation about the Z-axis,
followed by a rotation about the new Y-axis, followed by a rotation about the new Z-axis. This set of
displacements and angles is often referred to as X, Y, Z, Yaw, Pitch, and Roll. In general terms, if you
are standing up straight and looking at the horizon, the Yaw angle is the amount that you rotate to look
left and right along the horizon. The Pitch angle defines if you subsequently tilt your head to look up into
the sky or down into the ground. The Roll angle defines a final rotation of your head about its new vertical
axis. The X, Y, and Z values are in units of millimeters and the Yaw, Pitch, and Roll are in units of
degrees.

11.2.5. Since flexible automation must be able to alter a robot’s actions in order to accommodate process
variations, one of the most important features of the GPL system is the ability to efficiently and easily
mathematically manipulate position and orientation data. In the case of Angles Locations, this capability
is limited to providing the ability to change individual axes position values. However, for Cartesian
Locations, a much more powerful mathematics is provided.

As mentioned above, each Cartesian Location can have a reference frame or series of reference frames
associated with it. These reference frames can not only translate but also rotate the base coordinate
system in which the positions are defined. This allows arbitrary 6 degree-of-freedom adjustments to be
applied to correct for part and process tolerances and variations.

More generally, GPL includes several methods that can be used to combine the positions and
orientations of Cartesian Locations and reference frames. Reference frames are a super-set of
Cartesian Locations. So, in the following paragraphs, the comments concerning Locations apply to
reference frames as well.

When we combine multiple Location positions and orientations, it is easiest to think of Location Objects
as representing a change in position and orientation with respect to a coordinate system, which in turn
defines a new coordinate system. So, if we have a Location A, A can be thought of as defining a new
coordinate system relative to its base coordinate system. If we combine A with a second Location B, the
change in position and orientation of B is interpreted with respect to the new coordinate system defined
by A. If a third Location C is added, the combination of A, B, and C can be computed by interpreting the
change in position and orientation of C with respect to the coordinate system generated by combining A
and B.

As a specific example, let's consider the simple case without rotations where Location Ahasa X, Y, Z
value of (10,25,-40) and Location B has a X, Y, Z value of (0,5,0). If we now combined the values, B’s
incremental displacement of 5 mm along its Y-axis should be interpreted with respect to A’s prior
translations. The combined result would be (10,30,-40). Now, we can see what happens if we change A

36

The Guidance Programming Language

so it includes a 90-degree rotation about its Z-axis (10,25,-40,0,0,90). In this case, when we combine the
two values, B’s base Y-axis has been rotated to point along the negative X-axis of A’s base coordinate
system. So, the resulting combination would be (5,25,-40,0,0,90).

In addition to combining Locations, we can also eliminate the effects of Locations by computing the
“inverse” of a Location. An inverse negates the change in position and orientation of a Location. When
we combine these negative results with other computations in the proper order, we can unwind Location
computations.

The Location Class and its Object include not only basic properties, but also extensive methods for
mathematically manipulating the positions and orientations contained with these objects. All of these
properties and methods are described in detail in the Reference Documentation section and are briefly
summarized in the following table.

Member Type Description
. . Sets and gets a single axis position for an
location_obj.Angle Property Angles Location.
location_obj.Angles Method Changes all of the axes positions values in an

Angles Location.

location obj.Clone Method Returns a copy of the location obj.

Sets and gets the bit flags that specify special
robot specific location attributes.

Returns the distance that a Location, which
is defined relative to a conveyor reference
frame, is from the operating limits of the
conveyor.

Returns the distance between the XYZ
positions of two Cartesian Locations.
Modifies the “total position” of the
location_obj.Here Method location_obj to be equal to the current
location of a robot.

Defines the "total position" of location_ob)j
location_obj.Here3 Method based upon the XYZ coordinates of three
specified locations.

Returns the inverse of the “total position” of
the Cartesian location obj.

Returns a Cartesian Location equivalent to
location_obj.Kinesol Method an Angles Location for a specific kinematic
model or vise versa.

Returns the result of combining the “total
location_obj.Mul Method position” of location_obj with the “total
position” of another Cartesian Location.
Corrects the value of the PosWrtRef of a
location_obj.Normalize Method Cartesian Location for any mathematical
inconsistencies in the value.

Sets and gets the Pitch angle of the

location_obj.Config Property

location_obj.ConveyorLimit | Method

Location.Distance Method

location_obj.Inverse Method

location_obj.Pitch Property PosWrtRef of a Cartesian Location.
location_obj.Pos Property E::;Sti?)?]d (?t()ejts the “total position” of the
location_obj.PosWrtRef Property Egisa?ir(;cri]gets the PosWrtRef of a Cartesian
location_obj.Roll Property Sets and gets the Roll angle of the

PosWrtRef of a Cartesian Location.

37

The Guidance Programming Language

Sets and gets a String value not used by

location_obj.Text Property GPL. Available for general use by
applications.
location obj.Type Property Sets and gets the Type specification.

Sets and gets the X position value of the

location_obj.X Property PosWrtRef of a Cartesian Location.
Changes the X, Y, Z, Yaw, Pitch, and Roll

location_obj.XYZ Method values of the PosWrtRef of a Cartesian
Location.

location_obj.XYZInc Method Increments the X, Y, and Z values of the

PosWrtRef of a Cartesian Location.
Returns a Cartesian Location with a "total
Location.XYZValue Method position" equal to specified X, Y, Z, Yaw,
Pitch, and Roll coordinates.

Sets and gets the Y position value of the

location_obj.Y Property PosWrtRef of a Cartesian Location.
location_obj.Yaw Property Sets and gets the Yaw angle of the
— PosWrtRef of a Cartesian Location.
location_obj.Z Property Sets and gets the Z pos_ition value_ of the
— PosWrtRef of a Cartesian Location.
Sets and gets the distance along the Z-axis
location_obj.ZClearance Property that defines the safe approach position to the
Location.
Sets and gets the flag that indicates if the
location_obj.ZWorld Property approach distance is measured along the

Tool or World Z coordinate axis.

11.3. Profile Class and Objects

In order to move the robot in the standard position control mode, a program must specify the destination
for the motion and some trajectory parameters. The trajectory parameters include values that specify
how fast the robot is to move and what type of path the robot should traverse. As previously described,
Location Objects are utilized to specify robot and part positions and orientations. In GPL, the trajectory
parameters are captured in Objects that are instances of the Profile Class.

A Profile Object defines a motion’s peak speed, peak acceleration and deceleration, s-curve profile
parameters, type of path (i.e. straight line or interpolated in joint angles), and a constraint specification
used to define if the robot should stop at the end of the motion and when the robot is close enough to the
final destination to be considered “in position”.

While a program can have a unique Profile Object for each motion, it is often desirable to create several,
generic Profile Objects that can be repeatedly used throughout a project for similar types of

motions. For example, you might create one Profile for retracting the robot, a second Profile for moving
the robot at high speeds between intermediate (via) points, and a third Profile for final positioning of
parts. The repeated use of generic profiles often simplifies performance tuning an application.

All of the properties and methods for the Profile Class are described in detail in the Reference
Documentation section. The following table briefly summarizes this information.

| Member | Type | Description

38

The Guidance Programming Language

Sets and gets the peak motion speed
profile_obj.Speed Property specified as a percentage of the nominal
speed.

Sets and gets the secondary peak motion
speed specification as a percentage of their
nominal speeds for selected axes during
Cartesian motions.

Sets and gets the peak motion acceleration
profile_obj.Accel Property specified as a percentage of the nominal
acceleration.

Sets and gets the peak motion deceleration
profile_obj.Decel Property specified as a percentage of the nominal
deceleration.

Sets and gets the duration for ramping up to
the peak acceleration, specified in seconds.
Sets and gets the duration for ramping up to
the peak deceleration, specified in seconds.
Sets and gets the Boolean indicating if the
robot is to follow a straight-line path.

Sets and gets the constraint value that
specifies if the robot should be stopped at the
profile_obj.InRange Property end of the motion and when the robot is close
enough to the final destination to be
considered at its final position.

Sets and gets a String value not used by

profile_obj.Speed2 Property

profile_obj.AccelRamp Property

profile_obj.DecelRamp Property

profile_obj.Straight Property

profile_obj.Text Property GPL. Available for general use by
applications.
profile_obj.Clone Method Method that returns a copy of the profile_obj.

11.4. Move Class

The global Move Class provides the methods for commanding the robot to perform a motion. The most
fundamental position-controlled motion method is:

Move.Loc (Locationl,Profilel)

This executes a single motion segment and moves the robot to the absolute position and orientation
specified by Locationl using the performance parameters specified by Profilel. More complex, multi-
segment motions can be constructed by executing several Move methods in rapid succession. If desired,
the system will automatically blend motion segments together into a single “continuous path” that
executes several segments in succession before bringing the robot to a stop. This method can
significantly improve cycle times of even simple applications. Each motion segment can either move the
robot’s tool tip along a Cartesian straight-line path, a circular interpolated path or a joint-interpolated

path. Straight-line and circular paths are made possible by the installation of “kinematic modules” that
provide GPL with a knowledge of the robot’'s geometry.

As an ease-of-use feature, several Move methods are provided for defining the destination of a

motion. For example, methods are provided for specifying if the robot is to move directly to a destination,
move to the clearance position of a destination, move relative to the previous destination, or move a
single axis.

39

The Guidance Programming Language

In addition to position-controlled motions, the system also supports velocity and torque controlled
motions.

In order for a robot motion to be executed, the following conditions must be satisfied:

For general information on the system’s motion control capabilities, please see the introductory section on

1. High power for the amplifiers and motors must be enabled (see
Controller.PowerEnabled).

2. The motors must be commutated. This normally happens automatically and is
performed during the PowerEnable or the homing sequence.

3. Inthe standard case where the robot is to be position controlled, the robot axes
must be homed each time the controller is restarted (see
Robot.HomeAll). Homing reestablishes the zero position for each axes so that
the robot can repeat a previously taught motion.

4. The robot must be attached to the thread (see Robot.Attached). Attaching
ensures that only a single thread can issue motion commands to a robot.

“Motion Control”.

All of the methods for the Move Class are described in detail in the Reference Documentation
section. The following table briefly summarizes this information.

40

Member Type Description

Move.Approach Method Movgs_ to the cI(_earance position for a
specified Location.
Moves the tool tip of the robot along an arc

Move.Arc Method path defined by three Locations.

Move.Circle Method Moves the _tooI tip (_)f the robot around a
complete circle defined by three Locations.

Move.Delay Method Pagses execution of motions for a specified
period of time, in seconds.

Move.Extra Method Moves extra, mdepende_nt axes dl_mng the
next motion to a Cartesian Location.
Bypasses the system's normal motion
blending features and defines how the

Move.ForceOverlap Method execution of two sequential mo'tlons are to be
overlapped. Can also automatically limit the
rounding of corners between sequential
Cartesian motions.

Move.Loc Method Basic instruction to move to a specified
destination Location.

Move.OneAxis Method Convenience method to move a single axis of
a robot.

Move.Rel Method Mov_es toa Location t_hat is rel_atlve to the
destination of the previous motion.

Move.SetJogCommand Method Sets or ch_ang_es the specific mode, axis and
speed during jog (manual) control mode.
Sets the changes in position and orientation

Move.SetRealTimeMod Method for the Real-time Trajectory Modification
mode.

Move.SetSpeeds Method Sets new target speeds and accelerations for

all axes during velocity control mode.

The Guidance Programming Language

Sets new target torque output levels for all

Move.SetTorques Method .
motors in torgue control mode.
Move.StartJogMode Method Imngﬁlées execution of jog (manual) control
Initiates a trajectory mode that permits a GPL
Move.StartRealTimeMod | Method program to dynamically modify a planned path

while the path is being executed.

Starts / stops automatic control of an analog
output based upon a robot's tool tip speed.
Initiates execution of torque control mode for
one or more motors.

Switches all axes of a robot to velocity control
mode in place of position control mode.
Terminates execution of any active special
trajectory control modes.

Primes the system to automatically assert a
digital output signal or a thread event at a

Move.StartSpeedDAC Method

Move.StartTorqueCntrl Method

Move.StartVelocityCntrl | Method

Move.StopSpecialModes | Method

Move.Trigger Method prescribed trigger position during the next or
current motion.
Move WaitForEOM Method Pauses GPL program execution until the

current motion is completed.

11.5. RefFrame Class and Objects

The Objects of the RefFrame Class define robot and part reference frames. As previously described,
one or more Cartesian Locations can be defined relative to a RefFrame. If the position or orientation of
the RefFrame is subsequently modified, the absolute (or “total) position and orientation of all associated
Cartesian Locations are automatically adjusted and will move with the reference frame.

For example, a RefFrame Object, tray_ref, can be created that defines the position and orientation of a
tray of parts. The Location of each part on the tray can then be defined with respect to tray_ref. If the tray
and its parts move in unison, the position and orientation of tray_ref can be updated and the total position
of all of the part Locations will be automatically adjusted and move with the reference frame.

In addition to defining a Location with respect to a RefFrame, a RefFrame can be defined with respect
to another RefFrame. In the example above, if an array of trays is organized into a two dimensional grid,
a second “pallet” RefFrame, pallet_ref, can be defined to represent the grid of trays. tray_ref can then be
defined with respect to pallet_ref. Each time the pallet_ref is advanced to the next tray, the tray_ref
position will be modified as well as all of the part Locations that are defined with respect to tray_ref.

To define a Location with respect to a reference frame, you simply refer to the reference frame via the
RefFrame property of a Cartesian Location. For example,

Dim partl As New Location " partl defaults to Cartesian Loc
Dim tray_ref As New RefFrame
partl_RefFrame = tray_ref

partl defined wrt tray_ref

To simplify the use of reference frames, several different types of RefFrames exist and more will be
added in the future. The common members of all RefFrame Objects are summarized in the following
table. For detailed information on these members and those of the specific types of reference frames,
please consult the GPL Dictionary Pages.

41

The Guidance Programming Language

Member Type Description

refframe_obj.Type Property Sets and gets the type of the reference frame.

Sets and gets the Location Object that is an
integral part of the reference frame. The use of
Loc varies for different types of reference frames
although Loc.RefFrame always defines the next
reference frame if RefFrame_obj is itself relative
to another reference frame.

refframe_obj.Loc Property

Returns the absolute (“total”) position and

refframe_obj.Pos Method orientation for any type of reference frame object.

Returns the position for any type of reference

refframe_obj.PosWrtRef Method L .
frame while ignoring any further reference frames.

Sets and gets a String value not used by GPL.

refframe_obj. Text Property Available for general use by applications.

11.5.1. Basic Reference Frame

The basic type of RefFrame simply stores the position and orientation of the reference frame in the Loc
Location. The Loc.Pos property defines the position and orientation of the reference frame. The GPL
project is responsible for defining and updating the Loc.Pos value to reflect the current reference frame
value.

Dim locl As New Location " locl set to Cartesian Loc
Dim refl As New RefFrame
locl.RefFrame = refl " locl with respect to refl

refl.Loc.XYZ(10,20,30,0,180,20) ~ Set refl Pos

In order to define a basic reference frame with respect to another reference frame, the Loc.RefFrame
value must reference the next reference frame.

For a basic reference frame, it is possible to use Loc.Pos and Loc.PosWrtRef to read the total position
and relative position of the reference frame. However, it is generally a better practice to read the Pos and
PosWrtRef of the RefFrame instead. RefFrame_obj.Pos and RefFrame_obj.PosWrtRef will return the
current values for any type of RefFrame.

The RefFrame members that have special meaning for the basic type of reference frame are briefly
described in the table below.

Member Type Description
refframe_obj.Type Property Set to O to indicate a basic reference frame.
Loc.Pos is set equal to the position and
refframe_obj.Loc Property orientation of the reference frame by a GPL
procedure.

11.5.2. Pallet Reference Frame

A pallet reference frame defines a one, two, or three-dimensional rectangular grid of positions that are
sequentially indexed. For example, this type of reference frame can be utilized to represent a row of parts
being feed, an array of test samples organized into a two dimensional grid or a three dimension pallet of
shipping boxes. Once a pallet RefFrame has been defined, you can advance to the next position in the
pallet by simply invoking the pallet’s “PalletNextPos” method.

42

The Guidance Programming Language

The position of the first item (i.e. index 1,1,1) is defined by the X, Y, and Z displacements of Loc. The
directions of the X, Y, and Z axes of Loc define the direction for each row, column, and layer of the pallet,
respectively.

The distance between each item in a row, column, or layer is defined by the “PalletPitch” in each
dimension. The maximum number of elements in each row, column, or layer can also be specified.
Setting the maximum index to 1 indicates that this corresponding dimension is not incremented.

The order in which GPL indexes along rows, columns, and layers can also be specified. For example,
when PalletNextPos is executed, the default is to step along the row first, then along columns, and finally
to the next layer. However, you can change the order to any combination. So, you could step by layers
first, rows second, and then columns if you so choose.

In addition to using PalletNextPos to increment to the next pallet element, the pallet element can be
directly specified by the Palletindex property or the PalletRowColLay method. When a pallet indexes
beyond the final element, it automatically wraps back to the first element.

The RefFrame members that have special meaning for the pallet type of reference frame are briefly
described in the table below.

Member Type Description
refframe_obj.Type Property Set to 1 to indicate a pallet reference frame.
Loc.X, Y, and Z define the position of the first
row, column and layer. The orientation of the

refframe_obj.Loc Property X, Y, and Z axes of Loc define the direction
for each row, column, and layer respectively.
refframe_obj. Palletindex Property Sets and gets the index for the next position

along the pallet row, column, or layer (1 to n).

Sets and gets the maximum position index
along the pallet row, column, or layer (1 to n).

refframe_obj.PalletMaxIndex Property

refframe_obj.PalletNextPos Method Advances to the next pallet position.
Sets and gets the parameter that specifies
refframe_obj.PalletOrder Property the order in which PlalletNextPos indexes

along the row, column, and layer indices.
Sets and gets the step size for advancing
along each row, column, or layer.

Sets the next pallet position row, column, and
layer indices in a single instruction.

refframe_obj.PalletPitch Property

refframe_obj.PalletRowColLay | Method

11.5.3. Conveyor Reference Frame

Conveyor Tracking is a software option that permits Locations to be defined relative to a conveyor

belt. When the robot moves to such positions, the system automatically adjusts the robot's motions to
account for the actual position and speed of the belt. For example, this option allows an application that
picks parts from one conveyor and places them on a second conveyor to be taught when the conveyors
are stationary. Then, during the actual execution, the program will be automatically adjusted by the
system to perform the same operation even when the conveyors are moving.

From a programming point of view, conveyor reference frames provide the means for implementing a
conveyor tracking program. For each conveyor belt, one or more conveyor RefFrame objects must be
defined. Each such object specifies the conveyor that is being referenced and provides the data need by
the system to evaluate the instantaneous position of the belt.

43

The Guidance Programming Language

The Pos value of a conveyor reference frame always yields the instantaneous position of a conveyor and
its X-axis always points along the nominal direction of travel of the belt. Any Location that is defined with
respect to a conveyor RefFrame automatically moves with the conveyor belt.

The RefFrame members that are defined for a conveyor reference frame are described in the following
table. For more information on the Conveyor Tracking option, please see the Controller Software >
Introduction to the Software > Motion Control > Conveyor Tracking section of the Precise
Documentation Library.

Member Type Description
refirame_obj.Type Property ﬁz:nt(e) 2 to indicate a conveyor reference
Not used. Conveyor reference frames
refframe_obj.Loc Property cannot be defined with respect to any

other reference frame.

Returns the position of the "nominal”
refframe_obj.PosWrtRef Method transformation for the associated conveyor
robot.

Sets or gets the property that specifies the
zero position of the conveyor belt's encoder.
Sets or gets the property that specifies the
robot module that is interfaced to the belt
encoder and contains the data that defines
the conveyor.

refframe_obj.ConveyorOffset | Property

refframe_obj.ConveyorRobot | Property

11.6. Controller Class

The global Controller Class provides a means for GPL programs to access a number of system wide
features and facilities of the Guidance Controller System, e.g. High Power control, E-Stop logic,
Configuration Database values, etc. These capabilities are represented as properties and methods of the
Controller Class. Since this class is global, it does not have any properties or fields that have values
that are local to a specific routine or program scope. So, the Controller Class can be referenced directly
without the need for creating instances of Controller Objects. For example, to enable high power to the
amplifies for non-Category 3 (CAT-3) safe systems, the following GPL statement could be used:

Controller._PowerEnabled = True

In this instruction, “Controller” refers to the global Controller Class and “EnablePower” is a property of
this class. Likewise, if we wish to test if high power is currently enabled, the following instructions could
be utilized:

IT (Controller.PowerEnabled) Then

End If

Of special interest are the SystemMessage, ShowDialog and ShowDialogMCP methods of this

class. These methods allow GPL programs to easily output information to the operator and prompt for
simple responses. For the first two methods, the output and input appear on the web page that displays
the Operator Control Panel. For the third method, the output and input are performed via the Precise
Hardware Manual Control Pendant. In the following example, text is output to the system message log
displayed on the Operator Control Panel and then displays a pop-up to prompt for a "Yes" or "No"
answer.

44

Dim button As Integer
Controller.SystemMessage(‘'Sample output to Operator Control Panel')

Controller.ShowDialog(*'Yes,No",""Do you like this pop-up?",

The Guidance Programming Language

button)

Controller.SystemMessage(‘'Operator pressed button " & CStr(button))

All of the properties and methods for the Controller Class are discussed in detail in the Reference
Documentation section. The following table briefly summarizes the members of the class.

Member Type Description
Controller.Command Method Executes a coqsole command and returns any
output as a String value.
Returns an entry from the system Error Log as
Controller.ErrorLog Property a String value or clears the Error Log.
Controller.Load Method Loads_, a GPL project into memory and
compiles it in preparation for execution.
Controller.PDb Property Sets_ and gets any accessible value in the
configuration parameter database.
Optimized means to set and get numeric
Controller.PDbNum Property values in the configuration parameter
database.
Sends a request to either turn on or off high
Controller.PowerEnabled Property (motor) power to the amplifier. Returns whether
high power is on or off.
Controller. PowerState Property SRee(;[llljjrennsctehe current state of the high power
Sets and gets the latched Boolean value that
Controller.RecordButton Property indicates if the hardware MCP RECORD button
has been pressed.
Controller.ShowDialog Method Displays a pop-up dialog box on the web
Operator Control Panel.
Displays a pop-up dialog box on the LCD
Controller.ShowDialogMCP | Method display of the Precise Hardware Manual
Control Pendant.
Delays further execution of a thread for a
Controller.SleepTick Method specified number of Trajectory Generator
periods.
Sets and gets the Boolean flag that triggers a
Controller.SoftEStop Property Soft E-Stop.
Enters a message into the GPL system
Controller.SystemMessage | Method message log that is displayed on the web
Operator Control Panel.
Controller.SystemSpeed Property Sets and gets the property that can reduce the
speed of all robot motions.
Controller Tick Property Ret_urns the execution repetition period for the
Trajectory Generator.
: Returns the value of the controller's
Controller.Timer Property . : .
microsecond clock in units of seconds.
Controller.Unload Method Unloads an idle GPL project from memory.

45

The Guidance Programming Language

11.7. Robot Class

The global Robot Class provides a means for GPL programs to access functions and properties specific
to each robot configured in the system. The Robot is provided as a global class to simplify its access
since many systems have only a single robot and many applications are written to access and control the
robot from a single thread. Since this class is global, it does not have any properties or fields that have
values that are local to a specific routine or program scope. So, the Robot Class can be referenced
directly without the need for creating instances of Robot Objects.

The Robot Class provides properties and methods for reading the current position of a robot, initiating a
homing sequence from a program, forcing a rapid deceleration of any in-process motion, retrieving data
from the trajectory generator for the robot, setting and getting the robot's base and tool offsets, etc.

The most important operations of the Robot Class are to associate a specific robot with a specific thread
and to give exclusive control of a robot to a thread. Most read-only robot operations require that a
statement either explicitly specify a robot or have a previously Selected robot. For example, to read the
current position of a robot, the Selected robot will be accessed if no robot is specified. On the other
hand, in order to control or move a robot, a thread must first be Attached to a robot in order to gain
exclusive access to it. Typically, if a project is intended to control a robot, the GPL software development
environment can be configured to automatically generate the statements to ensure the robot will be
Attached at the start of program execution and un-Attached when the program is terminated or pauses
execution.

All of the properties and methods for the Robot Class are discussed in detail in the Reference
Documentation section. The following table briefly summarizes the members of the class.

Member Type Description

Sets and gets the number of the robot that is
exclusively controlled by a thread.

Sets and gets the position and orientation
offset for the base of the robot.

Gets an Integer that contains flag bits that
Robot.CartMode Property indicate if any special Cartesian trajectory
modes are active.

Sets and gets elements of a parameter array
Robot.Custom Property whose interpretation is specific to each
kinematic module.

Defines internal table of motor encoder
Robot.DefLinComp Method “Linearity compensation" correction values that
are automatically applied to encoder values.
Gets the Cartesian Location that is the final

Robot.Attached Property

Robot.Base Property

Robot.Dest Property destination for the previously executed motion.
Gets the Angles Location that is the final
Robot.DestAngles Property destination for the previously execution motion.
Robot Home Method Homes the Attached robot to establish the
' reference positions for each axes.
Robot.HomeAll Method Homes all robots to establish the reference

positions for each of their axes.

Converts an array of axis joint angles (in
Robot.JointToMotor Method degrees or millimeters) to an equivalent array
of motor positions (in encoder counts).

Returns a Profile Object whose properties are
equal to those of the currently executing motion

Robot.LastProfile Property

46

The Guidance Programming Language

or the last executed motion if no motion is
active.

Returns a code that indicates the temperature
status of a motor.

Converts an array of motor positions (in
Robot.MotorToJoint Method encoder counts) to an equivalent array of axis
joint angles (in degrees or millimeters).
Asserts or retrieves the last asserted value that
Robot.Payload Property specifies the mass of the payload being carried
by the robot.

Sets the Boolean flag that forces any in-
Robot.RapidDecel Property process motion for a robot to be rapidly
decelerated to a stop.

Returns a Cartesian Location whose value is
equal to the accumulated modifications
generated by the Real-time Trajectory
Modification mode.

Gets the position and orientation offset for the
Robot.RestartBase Property base of the robot that was set when the
controller was restarted.

Gets the position and orientation offset for the
Robot.RestartTool Property tool or gripper of the robot that was set when
the controller was restarted.

Sets and gets the number of the robot that will

Robot.MotorTempStatus | Property

Robot.RealTimeModAcm | Property

Robot.Selected Property be accessed for read-only operations by
default.
Returns a Cartesian Location whose value is
Robot.Source Property equal to the initial position and orientation of

the previously executed motion.

Returns an Angles Location whose value is
Robot.SourceAngles Property equal to the initial axes positions of the
previously executed motion.

Returns an Angles Location whose
Robot.SpeedAngles Property components contain the instantaneous speed
of each axis.

Sets and gets the position and orientation
offset for the tool or gripper of the robot.

Gets the Integer that indicates the current
Robot.TrajState Property state of the trajectory generator for a given
robot.

Gets a Cartesian Location whose value
Robot.Where Property indicates the current position and orientation of
a robot.

Gets an Angles Location whose value
Robot.WhereAngles Property indicates the current position of each axes of a
robot.

Robot.Tool Property

11.8. Latch Class

The global Latch Class provides a means for GPL procedures to receive the results of latches generated
by digital input signals configured to trigger latching. These latch results allow a robot or belt position to
be captured with high accuracy when a digital input value changes.

47

The Guidance Programming Language

The Latch Class defines Latch Objects that contain the time when the latch occurred and the robot axis
positions at that time. This class includes methods and properties for accessing the queue of latch
results, and for accessing the data in the results themselves.

Each robot has a single independent queue of latch result objects, generated when a configured latch
signal changes state. The queue is kept in order of time, with the oldest events first. Conveyor belts are a
special case of robots, normally configured as "encoder only" robots. Multiple belts or robots may be
latched independently.

For a general discussion of Latches, please see the Controller Software > Introduction To The
Software > Communications > Digital Inputs and Outputs > Latch Inputs section of the Precise
Documentation Library.

The methods for this class are summarized below:

Member Type Description

Returns the latched value of the specified axis
angle. Avoids creating a Location object.
Returns the number of latch results pending for a
robot or conveyor belt.

Returns the error code from a latch object. 0
means no error.

Flushes all latch results pending for a robot or
conveyor belt.

Returns a Location object containing the latched
position, as a Cartesian value or a set of angles.
Removes the next latch result from the queue for
a robot or belt and returns it as a Latch object.
Latch.Result Shared Method | Returns Nothing if the queue is empty. Throws
an exception if a result was lost due to an
overflow.

Returns the number of the digital input signal that
generated the latch.

Associates a thread event with a robot or belt.
The thread event gets set if the latch queue
contains latch results or when new latch results
are added.

Returns the timestamp when the latch occurred
latch_object. Timestamp Property as a Double value, consistent with the
Controller.Timer property.

latch_object.Angle Property

Latch.Count Shared Property

latch_object.ErrorCode Property

Latch.Flush Shared Method

latch_object.Location Method

latch_object.Signal Property

Latch.ThreadEvent Shared Property

12. Networking Communications

12. Networking Communications

The following pages explain how to communicate across the Ethernet network using GPL. They provide a
summary of the classes involved and examples of how to use them. For additional details on specific
methods and properties, see the GPL Dictionary.

48

The Guidance Programming Language

GPL includes a number of built-in classes to allow network communications between GPL and other
systems using TCP or UDP. They are similar to classes found in Visual Basic, and use concepts from
Unix and Linux network stacks. These pages are not intended to be a complete tutorial on network
communications, but should provide sufficient information for simple applications.

12.1. Networking Definitions and Classes

The table below summarizes the terms and abbreviations used by the network software and this

documentation:

Concept

Description

Client

A TCP or UDP Endpoint. A TCP Client connects to a Server and then issues
requests to that Server. Normally a TCP Client does not receive data except in
response to a request. A UDP Client sends to and receives from other UDP
clients.

Datagram

A unit of data that includes source and destination Endpoint information.

Endpoint

The source or destination for a datagram normally specified as an IP Address
and Port.

P

Internet Protocol - A low-level datagram protocol that is the basis for both TCP
and UDP.

IP Address

A 32-bit number that identifies a particular network and computer on that
network. Normally written as four decimal numbers, each of which range from
0 to 255, separated by periods. For example: 192.168.0.1

Port

A number from 0 to 65536 that identifies a process or protocol on a networked
computer. Some ports are pre-assigned to particular protocols. For example,
port 21 is normally used by a FTP server.

Server

A TCP Endpoint that accepts connections from a Client and services requests
from a Client. Normally a Server does not initiate 1/0O but simply responds to
requests. A UDP-based server uses the same methods as a client since there
iS no connection established.

Socket

An Object that holds connection information for network I/O. Various methods
associate Endpoints with Sockets.

TCP

Transmission Control Protocol - A connection-based protocol that sends
reliable Datagrams between Client and Server Endpoints. Messages are
guaranteed to be delivered in order.

ubpP

User Datagram Protocol — A connection-less protocol that sends Datagrams
between two endpoints, without any guarantee of delivery or ordering. UDP is
generally faster than TCP, but not as reliable.

GPL supports TCP Server and Client connections, as well as sending or receiving UDP datagrams. The
table below summarizes the classes for network 1/O.

Networking Class

Description

IPEndPoint Objects of this class describe IP Endpoints.

Objects of this class correspond to local network Endpoints. Most network 1/0
Socket :

operations are methods of the Socket class.
TepClient Objects of this class correspond to TCP Clients that can request connections

to a TCP Server.

TcpListener

Objects of this class correspond to TCP Servers that can accept connection
requests from TCP clients.

49

The Guidance Programming Language

UdpClient

Objects of this class correspond to UDP Endpoints. They can exchange UDP
Datagrams with other UDP Endpoints.

The tables below summarize the methods and properties for each of the classes. Each of these
properties and methods is described in detail in the GPL Dictionary contained in the Software Reference
section of the Precise Documentation Library.

IPEndPoint Member Type Description

New IPEndPoint Constructor Creates an Endpoint and allows the IP Address and
Method Port to be specified.
ipendpoint_obj.IPAddress Property Sets or gets the IP Address of an Endpoint.
ipendpoint_obj.Port Property Sets or gets the Port of an Endpoint.
Socket Member Type Description
socket_obj.Available Property Gets_ the number of data bytes currently available to
receive from a Socket.

. . Sets or gets the blocking mode for a Socket. If True,
socket_obj.Blocking Property the Socket blocks. If False, it does not block.
socket_obj.Close Method Closes any connections associated with a Socket.
socket_obj.Connect Method Requests a TCP Client connection with a remote TCP

Server.
Sets or gets the flag that controls whether a keep-
socket_obj.KeepAlive Property alive message is automatically transmitted over the
current TCP connection.
socket_obj.Receive Method Receives a datagram from an open TCP connection.
socket_obj.ReceiveFrom Method Receives a datagram from an open UDP connection.
socket_obj.ReceiveTimeout | Property gg';sk(; gets the receive timeout, in milliseconds, for a
socket_obj.RemoteEndPoint | Property Gets mfprmatlon about the remote end point of a TCP
connection.
socket_obj.Send Method Sends a datagram on an open TCP connection.
socket_obj.SendTimeout Property Sets or gets the send timeout, in milliseconds, for a
Socket.
socket_obj.SendTo Method Sends a datagram to an open UDP connection.
TcpClient Member Type Description
. Constructor Creates an Object for a TCP Client and optionally
New TcpClient .
Method requests a connection.
tcpclient_obj.Client Method Returns the embedded Socket for performing 1/O.
tcpclient_obj.Close Method Closes a Client Socket and breaks any connection.
TcplListener Member Type Description

. Constructor Creates an Object for a TCP Server to listen for

New TcpListener .
Method connections.
tcplistener_obj.AcceptSocket | Method Accepts a connection and returns a new Socket

Object for use by the TCP Server.

50

The Guidance Programming Language

tcplistener_obj.Close Method Stops listening and closes the listener Socket.

True if there is a pending connection and
AcceptSocket will succeed. Otherwise False.

tcplistener_obj.Start Method Starts listening for connection requests.
Stops listening and closes the listener Socket. Same

tcplistener_obj.Pending Property

tcplistener_obj.Stop Method s Close method.
UdpClient Member Type Description
. Constructor . .
New UdpClient Method Creates an Object for I/O using UDP.
udpclient_obj.Client Method Returns the embedded Socket for performing 1/0.
udpclient_obj.Close Method Closes a Socket.

All network-related I/O is performed using Socket Objects. TcpClient, TcpListener, and UdpClient
Objects contain internal Socket Objects that are created by their constructors or methods. These
Socket Objects are returned by the methods tcpclient_object.Client, tcplistener_object. AcceptSocket,
and udpclient_object.Client. It is not useful to create a Socket object using New.

12.2. TCP Server

A TCP server is a process that listens for connection requests and sets up connections with remote TCP
clients. The remote clients send requests to the server on the connection and receive responses. When
the connection is no longer needed, it is closed. The steps for setting up a TCP server are:

1. Create an IPEndPoint Object for the local endpoint. This Object should leave
the IP Address blank, allowing any remote node to connect, but set the port to a
specific number that the remote client knows.

2. Create a TcpListener Object using this IPEndPoint Object, and start listening
for a connection request by calling the tcplistener_object.Start method.

3. Optionally poll for a connection request using the tcplistener_object.Pending
property.

4. Accept the connection request and obtain a new Socket Object by calling the
tcplistener_object.AcceptSocket method. If no other connections are to be
serviced, stop listening for connections by calling the tcplistener_object.Stop
method.

5. Use socket_object.Receive and socket_object.Send to perform I/O with the
remote client.

6. When finished with the connection, call socket_object.Close to close it.

12.2.1. TCP Server Example

In this example, a simple TCP server is created to listen for connections on port 1234. A client may
connect from anywhere. The server simply echoes back whatever the client sends. You can use a
standard Telnet application to communicate with this server.

The IPEndPoint Object ep for the remote TCP client is set to IP address “”, port 1234, indicating it will
connect with any IP address using that port. A TcpListener Object, tl, is created that listens for
connections to that endpoint. The Pending method is used to poll for a connection request. When a

51

The Guidance Programming Language

request arrives, the AcceptSocket method returns a new Socket Object ts that is used for receiving
messages and sending replies.

Public Sub Telnet
* Simple Telnet-like TCP server, listening on port 1234
" Echoes back whatever it receives
Dim ep As New IPEndPoint(*"", 1234) " Accept from any IP
Dim tl As New TcpListener(ep)
Dim ts As Socket
Dim recv As String
Dim send As String
Dim ii As Integer

" Start listening and wait for a connection
tl._Start()

While Not tl.Pending()
Thread.Sleep(5000)

End While

Console.Writeline('Connection request...")

ts = tl.AcceptSocket() " Get the socket
tl.Stop() " Only service one

" Read from client and echo back messages

While True
il = ts_Receive(recv, 1000)
Console.Writeline("'Receive count: " & CStr(ii))
If ii = 0 Then
Exit While
End If
send = ""Received: " & recv
ts.Send(send)
End While
Console.Writeline(""Connection closed")
ts.Close()
End Sub

12.3. TCP Client

A TCP client is a process that establishes a connection with a remote TCP server, sends requests to it,
and receives replies. When the connection is no longer needed, it is closed. The steps for setting up a
TCP client are:

1. Create an IPEndPoint Object for the remote server endpoint. This Object
should specify the IP address of the remote server and the port number on which
the server is listening.

2. Create a TcpClient Object using this endpoint_object. Alternately you can
create a TcpClient Object omitting the endpoint_object, and later call
socket_object.Connect method to establish the connection.

3. Obtain the Socket Object for this connection by calling the
tcpclient_object.Client method.

4. Use socket_object.Send and socket_object.Receive to perform 1/0O with the
remote client.

5. When finished with the connection, call socket_object.Close to close it.

12.3.1. TCP Client Example

This example shows how to write a TCP client that connects to a TCP server.

52

The Guidance Programming Language

The IPEndPoint Object ep for the remote TCP server is set to IP address 192.168.0.2, port 1234. A
TcpClient Object, tc is created that connects to that endpoint. The Socket ts is obtained from tc and is
used for sending messages and receiving replies.

Public Sub Tcp_client
" Connect to a remote TCP server at
" IP address 192.168.0.2, Port 1234

Dim ep As New IPEndPoint(''192.168.0.2", 1234)
Dim tc As New TcpClient(ep)

Dim ts As Socket

Dim message As String

Dim reply As String

Dim ii As Integer

ts = tc.Client

message = "'Test message™ & Chr(GPL_CR) & Chr(GPL_LF)
ts.Send(message)

ts.Receive(reply, 1000)

Console.Writeline("'Reply: " & reply)

For ii = 1 To 100
ts.Send(message)
ts.Receive(reply, 1000)

Next ii

Console.Writeline("'Test complete')

ts.Close
End Sub

12.4. UDP Server and Client

A UDP Server and UDP client are very similar since there is no explicit connection between the two
endpoints. The difference is in how the endpoints are determined. The remote and local endpoints are
free to send or receive messages to or from any network address or port. The steps for setting up a UDP
server or client are:

PN

Create an IPEndPoint Object for the local IP address and port. Normally the IP
address can be left blank. The port may be left as zero if incoming datagrams to
any port should be matched, or non-zero to match only datagrams to a specific
port

Create a UdpClient Object using this local IPEndPoint Object.

Obtain the Socket Object by calling the udpclient_object.Client method.

If you are initiating a request, create another IPEndPoint Object that contains
the IP address and port of the remote destination. Use this remote IPEndPoint
Object with the socket_object.SendTo method to send the datagram.

If you are expecting to receive a request, create an IPEndPoint Object and pass
it ByRef when calling the socket_object.ReceiveFrom method. The IP address
and port of the remote endpoint is automatically stored in this IPEndPoint
Object. You can then use the same IPEndPoint Object in a
socket_object.SendTo method call to respond to the endpoint that made the
request.

12.4.1. UDP Client Example - Read File using TFTP

In this example, a UDP client is created to read a file from a TFTP server. TFTP is a standard UDP-based
file server found on many computers.

53

The Guidance Programming Language

The IPEndPoint Object srv_ep for the remote UDP client is set to IP address “192.168.0.2", and the
TFTP port 69. A UdpClient Object, uc, is created and the Socket Object associated with uc is stored in
us. The remainder of the I/O is performed with this Socket Object.

A TFTP “file open” message is built in string out and sent to the remote UDP endpoint contained in
srv_ep using the SendTo method. Using the ReceiveFrom method, the reply is stored into the string inp,
and the responding remote endpoint is saved in rem_ep. The rest of the messages are sent to rem_ep,
and additional replies are checked to verify that they are also from rem_ep.

Public Sub TftpClient
" Access a TFTP server using UDP, open a file,
" and display it on the console.
Dim file As String = "testfile._txt"
Dim srv_ep As New IPEndPoint(*'192.168.0.2", 69)
Dim rem_ep, ep As IPEndPoint
Dim out, inp As String
Dim uc As New UdpClient()
Dim us As Socket
Dim count, op, block As Integer

us = uc.Client

* Build "open for read" command
out = Chr(0) & Chr(1) & file & Chr(0) & "octet"™ & Chr(0)
us.SendTo(out, 0, srv_ep)

count = us.ReceiveFrom(inp, 1500, rem_ep)
Console._Writeline("'Remote ip: " & rem_ep.lPAddress & _
", port: " & CStr(rem_ep.Port))

op = Asc(inp.Substring(0,1))*256 + Asc(inp.Substring(1,1))
block = Asc(inp.Substring(2,1))*256 + Asc(inp.Substring(3,1))
Console.Writeline(''Block: " & CStr(Block))
ITf (count>4) Then

Console.Writeline(inp.Substring(4))
End If

While True
out = Chr(0) & Chr(4) & Chr(block/256) & Chr(block)
us.SendTo(out, O, rem_ep)

IT (count<512) Then * End if less than 512 bytes
Exit While
End If

count = us.ReceiveFrom(inp, 1500, ep)

IT (ep-I1PAddress<>rem_ep.IPAddress) Or _
(ep.Port<>rem_ep.Port) Then
Console._Writeline(""Address mismatch'™)
Exit While

End If

block = Asc(inp.Substring(2,1))*256 + _

Asc(inp.Substring(3,1))

Console.Writeline("Block: " & CStr(Block))

IT (count>4) Then
Console.Writeline(inp.Substring(4))

End If

End While

Console.Writeline("Transfer complete'™)
us.Close

End Sub

12.4.2. UDP Client Example - Write File using TFTP

54

The Guidance Programming Language

In this example, a UDP client is executed on the controller that writes a file to a remote TFTP server.
TFTP is a standard UDP-based file server found on many computers.

The IPEndPoint Object srv_ep is set to the IP address (192.168.0.2) and TFTP port (69) for the remote
UDP server. An UdpClient Object, uc, is created and the Socket Object associated with uc is stored in
us. The remainder of the I/O is performed with this Socket Object.

A local file is opened for read using a StreamReader object. Then a TFTP “file write request” message is
built in string out and sent to the remote UDP endpoint contained in srv_ep using the SendTo method.
Using the ReceiveFrom method, the reply is stored into the string inp, and the responding remote
endpoint is saved in rem_ep. The reply opcode is checked to verify that the server has accepted the
write.

The rest of the messages are sent to rem_ep, and additional replies are checked to verify that they are
also from rem_ep.

Data is transferred from the local file to the TFTP server in blocks of 512 bytes, using a "data" message.
After each data message, the reply is read from the server and the opcode and acknowledged block
number is checked. A more elaborate client program could retransmit data blocks if an error occurs.

Public Sub TftpWrite
" Access a TFTP server using UDP,
" Open a local file for read,
* and write the file to the TFTP server
Dim file As String = "testfile._txt"
Dim srv_ep As New IPEndPoint(*'192.168.0.2", 69)
Dim rem_ep, ep As IPEndPoint
Dim out, inp As String
Dim in_file As StreamReader
Dim uc As New UdpClient()
Dim us As Socket
Dim count, op, block, ack, err As Integer
Dim c As Integer
Dim ii As Integer

" Open file to read from flash
in_file = New StreamReader('/flash/" & file)

us = uc.Client

® Build "open for write" command
out = Chr(0) & Chr(2) & file & Chr(0) & "octet" & Chr(0)
us.SendTo(out, 0, srv_ep)

count = us.ReceiveFrom(inp, 1500, rem_ep)
Console.Writeline("'Remote ip: " & rem_ep.IPAddress & _
", port: " & CStr(rem_ep.Port))

op = Asc(inp.Substring(0,1))*256 + Asc(inp.Substring(1,1))
Console.Writeline(''Open response: " & CStr(op))

" Handle error
IT op <> 4 Then
IT op = 5 Then
err = Asc(inp.Substring(2,1))*256 +
Asc(inp.Substring(3,1))
Console._Writeline("Error code: " & CStr(err))
End If
GoTo _exit
End If

block =1

Do

55

The Guidance Programming Language

out = """

For ii = 1 To 512 " Read block of up to 512 bytes
c = in_file.Read()
If ¢ < 0 Then Exit For
out &= Chr(c)

Next i1

" Write data block
out = Chr(0) & Chr(3) & Chr(blocks256) & Chr(block) & out
us.SendTo(out, 0, rem_ep)

" Read reply

count = us.ReceiveFrom(inp, 1500, ep)

IT (ep-l1PAddress <> rem_ep.IPAddress) OrElse _
(ep.Port <> rem_ep.Port) Then
Console.Writeline("'Address mismatch')
Exit Do

End If

op = Asc(inp.Substring(0,1))*256 + Asc(inp.Substring(1,1))
If (op <> 4) Then

Console.WriteLine("Failed to write')
End If
ack = Asc(inp.Substring(2,1))*256 + Asc(inp.Substring(3,1))
If ack <> block Then

Console.Writeline("'Ack block mismatch')

End If
block += 1
Loop While ¢ >= 0 * Loop until end of file
Console.Writeline("Transfer complete')
_exit:
us.Close

in_file.Close()

End Sub

13. MODBUS/TCP Communications

13. MODBUS/TCP Communications

The following pages explain how to communicate across the Ethernet network using the MODBUS/TCP
protocol. This is an "open" de facto standard protocol that is widely employed in the industrial
manufacturing environment to communicate with intelligent devices such as sensors and instruments. It
has been implemented by hundreds of vendors on thousands of different products to communicate digital
and analog I/O and register data between devices. In addition to factory applications, MODBUS/TCP is
being utilized in building, infrastructure, transportation and energy applications.

MODBUSI/TCP is layered on top of the Ethernet TCP protocol. The GPL Modbus Class is provided as a
convenience to allow a GPL procedure to easily communicate with MODBUS/TCP devices without the
need to implement this protocol. This section provides a summary of the Modbus Class and examples of
how to use it. For additional details on specific methods, see the GPL Dictionary.

For more information on the TCP protocol, see the Network Communications section. For information
about the MODBUS/TCP protocol and standards, see the MODBUS-IDA website at
http://www.modbus.org.

56

http://www.modbus.org/

GPL operates as a Master and communicates to devices that are configured as MODBUS/TCP slaves.

The Guidance Programming Language

this mode, GPL supports the following MODBUS/TCP functions:

In

Function Function Name Description
Code
1 Read coils Read one or more digital outputs.
2 Read discrete inputs Read one or more digital inputs.
3 Read holding registers Read one or more holding registers.
4 Read input registers Read one or more input registers.
5 Write single caoll Write a single digital output.
6 Write single register Write a single holding register.
15 Write multiple coils Write multiple digital outputs.
16 Write multiple registers Write multiple holding registers.
43, M1I53I type Read Device Identification Read string values identifying the device.

In addition, a Guidance controller can be configured to operate as a MODBUS/TCP slave and accept
commands from an 3rd party MODBUS/TCP master. Please see the Communications section of the
Introduction to the Software chapter of the Precise Documentation Library for more information on this

mode of operation.

13.1. Modbus Class

The Modbus Class in GPL supports master access to MODBUS/TCP slave devices connected to the

local Ethernet.

The tables below summarize the methods and properties of the class.

Modbus Class Member Type Description
New Modbus Constructor [Creates an object for a MODBUS connection
Method and specifies the IP address.
modbus_object.Close Method CIc_)ses any connections associated with this
object.
modbus_object.ReadCoils Method Reads one or more outputs.
modbus_object.ReadDeviceld Method Reads the device ID strings.
modbus_object.ReadDiscretelnputs Method Reads one or more inputs.
modbus_object.ReadHoldingRegisters | Method Reads one or more holding registers.
modbus_object.ReadInputRegisters Method Reads one or more input registers.
Get/Set Gets or sets the timeout, in milliseconds, that
modbus_object.Timeout this connection will wait for a reply before
Property ; .
throwing an exception.
modbus_object.WriteMultipleCoils Method \Writes multiple outputs.
modbus_object.WriteMultipleRegisters | Method Writes multiple holding registers.
modbus_object.WriteSingleCoil Method \Writes a single output.
modbus_object.WriteSingleRegister Method Writes a single holding register.

57

The Guidance Programming Language

13.2. Modbus Master Connection

When GPL operates as a MODBUS master, it sets up a TCP client connection with a remote
MODBUS/TCP slave. The slave acts as a TCP server. When the connection is no longer needed, it may
be closed. The steps for establishing this type of connection are as follows:

1. Create an IPEndPoint object for the remote MODBUS/TCP slave. This object
normally specifies the IP address of the slave and omits the port number, in
which case the standard MODBUS/TCP port is used.

2. Create a Modbus object using this endpoint_object. Creating a Modbus object
does not establish a connection, but simply saves the endpoint information for
later.

3. Use the modbus_object.Timeout property to set an appropriate timeout value for
the connection. By default the timeout is infinite.

4. Use the various Modbus class methods to read or write data. The first time you
issue a read or write, GPL attempts to connect with the MODBUS slave. If the
slave does not respond, an exception is thrown.

5. When finished with the MODBUS slave, call modbus_object.Close to close
it. Do this at the end of a session, not after each read or write request.

13.3. Modbus Master Examples

In both of these examples, the IPEndPoint object ep for the MODBUS slave is set to IP address
192.168.0.150. A Modbus object, mb is created that refers to that endpoint. The mb object is used for
communicating with the slave.

This first example shows a procedure that reads from a MODBUS slave.

Public Sub Modbus_Read_Example
Dim ep As New IPEndPoint(''192.168.0.150")
Dim mb As New Modbus(ep)
Dim ii As Integer
Dim bool() As Boolean
Dim input() As Integer

mb.ReadCoils(1, 16, bool)
For ii = 1 To 16

Console.Write(''Coil " & CStr(ii) & ": ')
Console.Writeline(bool (ii-1))
Next ii

mb.ReadDiscretelnputs(l, 16, bool)
For ii =1 To 16

Console.Write("Input " & CStr(ii) & ": ')
Console.Writeline(bool(ii-1))
Next ii

mb.ReadHoldingRegisters(l, 2, input)
For ii =1 To 2

Console.Write(""HReg " & CStr(ii) & ": ')
Console.Writeline(Hex(input(ii-1)))
Next ii

mb.ReadInputRegisters(l, 2, input)
For ii =1 To 2

Console.Write("'IReg " & CStr(ii) & ": ')
Console._Writeline(Hex(input(ii-1)))

Next ii

mb.Close()

58

End Sub

The Guidance Programming Language

The next example shows a procedure that writes to a MODBUS slave.

Public Sub Modbus_Write_Example

Dim
Dim
Dim
Dim
Dim

For

ep As New IPEndPoint(''192.168.0.150")
mb As New Modbus(ep)

ii As Integer

output() As Integer

bool() As Boolean

ii =1 To 16

mb.WriteSingleCoil(ii, ii And 1)

Next ii

mb.WriteSingleRegister(l, 600)

ReDim bool (15)

For

ii =0 To 15
bool (i) = i And 2

Next ii
mb_WriteMultipleCoils(1l, bool)

ReDim output(15)

For

ii =0 To 15
output(ii) = 1i*il

Next ii

mb_WriteMultipleRegisters(l, output)

End Sub

14. File I/O, Serial I/0O and Streams

14. File I/O, Serial I/0O and Streams

The following pages describe how to read and write data from or to serial ports and files using GPL
streams. These pages provide a summary of the classes and methods that may be used, as well as some
simple examples. For additional details on individual methods, see the GPL Dictionary.

The table below summarizes many of the concepts related to file and serial I/O operations that are
mentioned in this section.

Concept

Description

American Standard Code for Information Interchange. A code that represents

ASCII the English alphabet, numbers, symbols, and control characters as 7-bit binary
numbers. Used by GPL to represent text strings.
An internal data area that groups bytes into larger blocks so that they can be
Buffer . oy
read or written more efficiently.
An 8-bit data item that can hold a number from 0 to 255 or an ASCII character.
Byte
Streams are composed of bytes.
CR Carriage Return. The ASCII control character with decimal value 13. Often

used as a line terminator.

59

The Guidance Programming Language

A named grouping of files. Also known as a "folder". Directory names have the
Directory same properties as normal file names. Directories may be contained inside
other directories.

A named collection of bytes that may be stored in permanent flash memory (on

File device /flash) or in temporary system memory (on device /ROMDISK).
The name of a file. File names may be from 1 to 43 characters and contain any
File name printable ASCII character other than "/" or a leading ".". Upper and lower case

letters are considered to be different. It is recommended, but not required, that
only valid GPL symbol names are used.

For efficiency, write operations often just add data to an internal buffer and do
not access the associated file or serial port. This allows small strings to be
accumulated. The system then automatically writes entire buffers to the output
Flush device when the buffer is full. The downside of this process is that if the
controller is turned off, the contents of the internal buffers are lost. "Flushing"
buffers forces their contents to be written to the file or serial port. Closing a
stream automatically flushes any associated buffer.

Line Feed. The ASCII control character with decimal value 10. Often used as a

LF))
line terminator.

A sequence of 1 or 2 ASCII characters that marks the end of a line. Normally

Line terminator LF, CR, or CR-LF.

The file name, preceded by a list of folders that determine the location of the
Path file. For example: A GPL program file may be found in
"/flash/projects/My project/Main.gpl".

An I/O device that transmits and receives byte data using a standard serial
protocol. The first RS-232 serial port is named "/dev/com1". Depending on
your controller model, you may have additional RS-232 serial ports named
"/dev/icom?2" and "/dev/com3" and an optional RS-485 serial port named
"/dev/icom4". Remote serial ports are named "/dev/comrxy" where "x" is the
number of the remote device and "y" is the serial port on the remote device.

Serial port

The StreamWriter and StreamReader classes treat data from serial ports or files as a continuous stream
of 8-bit bytes. These bytes may be ASCII characters or they may be arbitrary binary data. Many of the
methods transfer data to and from GPL string variables. Each byte of a string may be thought of as either
an 8-bit binary value or an ASCII character. GPL includes methods and functions to convert between
integer data and ASCII characters in strings, for example the Chr and Asc functions.

Some methods interpret the data stream as a series of lines, terminated by a special "line-terminator”
character sequence. The NewLine property allows some flexibility in determining the line-terminator used
when writing lines.

The File class contains methods for managing entire files or directories, such as creating directories or
deleting files. All the File methods are shared, so there are no File objects.

14.1. Classes and Methods

GPL provides the File built-in class for managing files and directories. The table below summarizes the
various methods available.

File Class Member Type Description

Copies a single file on devices like the flash disk and
ROMDISK.

File.Copy Shared Method

60

File.CreateDirectory

Shared Method

The Guidance Programming Language

Creates a directory including any undefined directories
in its path.

File.DeleteDirectory

Shared Method

Deletes a single directory, if it is empty.

File.DeleteFile

Shared Method

Deletes a single file.

File.GetDirectories

Shared Method

Returns an array of strings containing the names of
directories in a directory.

File.GetFiles

Shared Method

Returns an array of strings containing the names of
files in a directory.

GPL provides two built-in classes for accessing streams: StreamReader and StreamWriter.

StreamReader Member Type Description
New StreamReader ﬁ(ért'lr?érgctor Opens a file or serial port device for reading.
streamreader_obj.Close Method Closes a file or device.
streamreader_obj.Peek Method Reads a single byte but does not remove it from the
input stream.
streamreader_obj.Read Method Reads a single byte and removes it from the input
stream.
streamreader_obj.ReadLine | Method Reads a line of bytes terminated by LF, CR, or CR-LF.
StreamWriter Member Type Description
New StreamWriter E:A(;?sérgctor Opens a file or serial port device for writing.
streamwriter_obj.AutoFlush | Property If True, automatically flushes output after every write.
streamwriter_obj.Close Method Closes a file or device.
streamwriter_obj.Flush Method Forces any pending output to occur immediately.
streamwriter obi.NewLine Propert Defines the line terminator characters that are
—o0)- perty appended to output by WriteLine.
streamwriter_obj.Write Method Wr|tes a string or number to the output stream with no
line terminator.
streamwriter_obj.WriteLine | Method \Writes a string or number to the output stream

followed by a line terminator.

The same methods are used for accessing both files and serial ports. The major differences between the

two are:

1. Serial ports are normally used for communications, but files are used to save and

retrieve data.

2. Data read from files is normally available immediately, but you may need to wait

to receive data from a serial port.

3. Files have an "end of file", but serial port data can continue indefinitely.
4. Data written to files is normally buffered for efficiency, but serial port
communications are often time-critical so the output is not buffered.

GPL also provides a built-in class for performing output to the serial console or to the GDE console

window.

61

The Guidance Programming Language

Console Class Member Type Description
Console Write Shared Method Diagnostic method that writes a number or a string to
the console.
o Diagnostic method that writes a number or a string to
Console.WriteLine Shared Method the console, followed by a line feed (LF) character.
14.2. File 110

Files are used to save and retrieve data to and from a disk, flash or similar device. To locate a file, you
must provide a "path" to that file. The first item in the path is the device, followed by a list of folders, and
ending with the file name. The device name, folder names and file name are separated by "/* characters.
For example:

/ROMDISK/my_folder/my _file.dat

File names often contain an embedded "." followed by a character sequence that indicates the file type.
This file type is treated as simply part of the file name and is ignored by the file system. However, the file
type is used by certain system components. For example, the GPL compiler assumes that source files
always have the type ".gpl", so a file name might be:

[flash/projects/Myproject/Main.gpl

Files may be either temporary or permanent. Temporary files are written to a temporary memory-based
disk with device name "/ROMDISK". These files consume blocks of the CPU's main memory and are lost
when the controller is restarted. Temporary files may be read or written very quickly. Permanent files are
written to a disk which is part of the non-volatile flash memory, with device name "/flash". This disk is very
slow to write, but may be read quickly. All file paths must begin with either "/ROMDISK" or "/flash".

14.2.1. Steps for Writing a File

1. Open the file by creating a StreamWriter object. The path to the file to be written
is a required argument to the StreamWriter New method. If you want to append
to an existing file, set the append input parameter to True. Otherwise a new file is
created, overwriting any existing file that matches the path.

2. Decide if you want your data to be buffered during output. If not, change the
AutoFlush property to True, from its default value of False. Setting AutoFlush
to True will make the output much slower, especially for the /flash device.

3. If you are going to organize your output data into lines, decide if the default line

terminator (CR-LF) is appropriate. If not, use the NewLine property to change it.

Use the Write or WriteLine methods to write the data.

Use the Close method to force any pending output to be written and to update all

internal file data.

o s

14.2.2. Steps for Reading a File

1. Open the file by creating a StreamReader object. The path to the file to be read
is a required argument to the StreamReader New method.

2. Read the data by using either the Read or ReadLine methods.

3. Use the Peek method to check for the end of the file, or enclose the read
operation in a Try-Catch block to capture read errors.

4. Use the Close method to release any system resources held by the object.

62

The Guidance Programming Language

14.2.3. File I/O Example

In this example, a temporary file is created using the StreamWriter object "0" and written with lines that
contain the string values "Line 1" through "Line 10". The file is closed and then opened for read using the
StreamReader object "i". If the Peek method does not indicate end-of-file, a line is read from the input file
and written to the console. Finally the input file is closed.

Public Sub file_write_read
" Write a file, read it back, and display it on the console
Dim o As New StreamWriter("/ROMDISK/filetest")
Dim i As StreamReader
Dim line As String
Dim ii As Integer

For ii =1 To 10

o.WriteLine('"Line " & CStr(ii))
Next ii
o.Close()

i = New StreamReader(*'/ROMDISK/Ffiletest')
While i.Peek() >=0 * Check if end-of-file
line = i.Readline()
Console.WriteLine(line)
End While
i.Close()
End Sub

14.3. Serial 1/O

Serial ports are normally used to communicate with a host computer or an intelligent sensor. The GPL
Controller's first RS-232 serial port is named "/dev/icom1". If your controller contains additional RS-232
serial ports, they are named "/dev/com?2" and "/dev/com3". If your controller contains an RS-485 port that
is available to application programs, it is named "/dev/com4". If your system is connected to a Remote IO
(RIO) board that provides additional remote serial ports, they are named "/dev/comrxy" where "X" is the
number of the RIO board and "y" is the number of the RIO's serial port.

The first serial port is also used by the GPL serial console interface, so you cannot use the serial console
if you are using "/dev/com1". When you open device "/dev/icom1”, the console interface is immediately
disabled. You can disable or re-enable the serial console, by changing Parameter Database entry "Serial
console enable" (DatalD 125). When the serial port is being utilized for program input and output, you can
still access the system console via the Telnet interface. Note that system crash messages and certain
fatal error messages may be output to /dev/icoml even when it is being used by a GPL procedure. Your
remote system must be able to handle these unexpected messages.

Serial ports send and receive streams of byte data in a format and rate determined by their configuration.
See instructions elsewhere for setting up the baud rate, character size, stop bits, parity, and hardware
flow control settings. Unlike files, a single serial port can be opened for both input and output
simultaneously. There is no way for a serial device to detect that a communications link has been closed.
Normally the remote device sends a special byte sequence or message to indicate the end of
communications.

14.3.1. Steps for Communicating Using a Serial Port

1. If you are planning to use the first serial port permanently for communications,
set the system parameter "Serial console enable” (DatalD 125) to 0.

63

The Guidance Programming Language

2. Open the port for output by creating a StreamWriter object. The device name is
a required argument to the StreamWriter New method. For serial port 1, the
device is "/dev/com1".

3. Open the port for input by creating a StreamReader object. The device name is
a required argument to the StreamReader New method. Use the same device
as specified in the previous step.

4. Decide if you want your data to be buffered during output. Generally serial
communications is not buffered. If you want it buffered, change the AutoFlush
property to False, from its default value of True. If you use buffered output you
probably need to use the Flush method to make sure your output is transmitted
when you expect.

5. If you are going to organize your output data into lines, decide if the default line
terminator (CR-LF) is appropriate. If not, use the NewLine property to change it.

6. Use the Write or WriteLine methods on your StreamWriter object to write data.

7. If you do not want your input procedure to be blocked while waiting for data to be
received, use the Peek method to check if data is present before using Read.

8. Use the Read or ReadLine methods on your StreamReader object to read data.

9. Use the Close method to release the serial ports for other use and free system
resources.

14.3.2. Serial /0 Example

In this example, serial port 1 is used to communicate with an operator terminal connected to the port. The
program prompts the operator to type a character and waits until they do. Then it outputs a message
describing the character to the serial port. The device "/dev/com1" is opened for both output and input by
creating both StreamWriter and StreamReader objects, "o" and "i", respectively. The output line
terminator is set to CR by using the NewLine property. The procedure polls the input every 500
milliseconds for input. If no input is received, a series of dots is output. When an input character is
received, it is converted to a readable string and a message is written back to the serial port. When an
ASCII ESC character (decimal value 27) is received, the procedure closes the streams and exits.

Public Sub coml
" Open coml, echo info about any input.
Dim o As New StreamWriter(*'/dev/coml’™)
Dim i As New StreamReader(*'/dev/coml'™)
Dim c As Integer
Dim ss As String

o.NewLine = Chr(GPL_CR) " Set CR as the line terminator
o.WriteLine("Type characters, hit ESC to quit.")

Do
o.Write("Waiting for input ')
While i.Peek() < O
Thread.Sleep(500)
o.Write('.™)
End While
o.WriteLine('")

c = i.Read()
IT ¢ >= &H20 Then
ss = Chr(c)
Else
ss = "A" & Chr(c+&H40)
End If
o.WriteLine("You typed " & """ & ss _
& " = " & CStr(c))
Loop While c <> 27 " Exit if ESC typed
i.Close()

64

The Guidance Programming Language

o.Close()
End Sub

14.4. Console Output

As a convenience during program development and testing, serial output may be performed to the GPL
console. The actual destination of console output depends on the presence of the -event switch on the
Start console command. If -event is not present, console output is sent to the first serial port named
"/dev/icom1”. If -event is present, console output is sent to GDE where it is displayed in the GPL Output
window.

For more information on how to use and configure the serial ports, see the previous Serial /O section.

The console output methods are overloaded and allow either a numeric value or string to be output. For
output that combines both string and numeric values, use the CStr function.

14.4.1. Example

Public Sub Main
Dim ii As Integer
For 1i = 1 To 10
Console.WriteLine(""The square of " & CStr(ii) _
& " is " & CStr(ii*ii))
Next ii
End Sub

14.5. Non-Volatile Memory (NVRAM)

Some Precise controllers manufactured after June 2013 include a small area of Non-Volatile Memory
(NVRAM) that is user accessible. The NVRAM contents are preserved when the controller power is
turned off. This area was added to permit applications to store a limited amount of key dynamic state
information such as performance statistics or System Error Log entries.

The NVRAM is different from the non-volatile flash memory (device /flash) in that the NVRAM is not
affected by unexpected power-off conditions. After writing to the /flash device, you must wait for at least
15 seconds before powering off the controller. If you do not wait, the /flash contents may become
corrupted and you may lose all of the files stored on the /flash device. The NVRAM can be written
without danger of corrupting existing data, even if the power is turned off during a write operation. Of
course, the data actively being written may be lost.

Another difference is that the flash memory can only be written a finite (but relatively large) number of
times, whereas the NVRAM can be written an unlimited number of times.

The major downside of the NVRAM is that its storage area is small compared to the flash memory. The
total NVRAM size is 8Kbytes of which 7872 bytes are available for user files.

14.5.1. /INVRAM Files

Data may be stored in files on the NVRAM by specifying the device /NVRAM. This device may be used
with all types of I/O methods, including StreamWriter, StreamReader, and FTP.

14.5.1.1. File Names

65

The Guidance Programming Language

To maximize the space available for data, a maximum of 16 NVRAM files may be created, and the names
must be "file1" through "“file16".
14.5.1.2. Maximum File Size

When an NVRAM file is created, it's maximum size should be defined by appending the following switch
to the file path specification:

-sizen
where n is the maximum size of the file, in bytes. This value may range from 4 to the maximum number of
unused bytes on the device (less than 7873). Once a file is created, its size cannot be changed unless
the file is deleted and created again.
If “-size n” is omitted when creating a new file, a default size of 1024 bytes is assumed.

14.5.1.3. Circular Files

To assist in logging data to the NVRAM, a file may be specified to act as a circular buffer that wraps
around to the beginning once it reaches its maximum size. This mode of operation is enabled by
appending the following switch to the file path specification:

-wrap

In a circular file, new data overwrites the oldest data once the maximum file size is reached. In a normal
non-circular file, an error is signaled if an attempt is made to write when the file is full.

By searching for the final record in a file, you can always find the latest entry, even after a power failure.
14.5.1.4. File Records

When a NVRAM file is written, the data is stored as a record. Each record can have a maximum length of
255 bytes. Each record is written atomically, that is, either the entire record is written or none of the
record is written, even if the power fails during the write operation. In a circular file, entire records from the
start of the file are removed atomically before new records are added. In this way, records in the file are
never left in a partially updated state.

Delaying an output request to the NVRAM by buffering defeats some of the NVRAM benefits, since
buffered data may be lost during a power fail. To avoid this problem, StreamWriter objects for device
INVRAM have AutoFlush enabled by default. If you disable AutoFlush, you need to be aware of the
implications and use the Flush method appropriately.

There is one byte of overhead for the entire file, and one byte for each record. You should account for this
overhead when computing the maximum number of records that a file can contain.

There are no special considerations for reading an NVRAM file except that attempting to read a circular
file while it is being written may return inconsistent data.

14.5.1.5. FTP Access

66

The Guidance Programming Language

The files in the /INVRAM device may be accessed by a remote FTP client. If your host computer supports
this service, the /INVRAM folder shows up in the top-level FTP directory. FTP always displays the
maximum allocated file size and the date and time the file was last modified.

14.5.1.6. File Writing Examples

In this example, a non-circular file with a maximum length of 64 bytes is created,

Dim tfile As New StreamWriter(""/NVRAM/file2 -size 64", True)
Dim ii As Integer
For ii = 1 To 100
tfile.WriteLine(""Record " & CStr(ii))
Next ii
tfile.Close

This program fails with ii = 6 with error -323 (Device full). At this point, /NVRAM/file2 contains the
following records:

Record 1
Record 2
Record 3
Record 4
Record 5

In the next example, a circular file is created of the same size.

Dim tfile As New StreamWriter("'/NVRAM/Tile3 -size 64 -wrap', True)
Dim ii As Integer
For ii = 1 To 100
tfile WriteLine("'Record " & CStr(ii))
Next ii
tfile.Clos

This program does not fail. After execution completes, /INVRAM/file3 contains the final records written:

Record 96
Record 97
Record 98
Record 99
Record 100

14.5.2. Automatically Logging Error Messages to the NVRAM

In GPL 4.0 and later, a new feature was added that automatically writes system error messages into a
specified file as the errors occur. This feature is enabled by writing the file name into the Parameter
Database entry "Error log file" (DatalD 323). This feature was designed with the NVRAM in mind but can
be used with other file structured devices as well.

To automatically enable error message logging into the NVRAM, a file name and file size must be
specified. For example, DatalD 323 could be set to:

"INVRAM/filel -size 7500 -wrap"

This would write all new error messages into filel using most of the available NVRAM space. The
maximum size could be set to 7872. The "-wrap" will create a circular buffer so that older messages will
be over-written by new messages when the file becomes full.

67

The Guidance Programming Language

Prior to enabling error logging, the console command "Del" should be used to make space for the error
log file.

Please see the documentation on "Error log file" (DatalD 323) for a full list of the options available with
this feature.

14.5.3. Non-Volatile Integer Data

For some applications, only a small amount of data needs to be saved and the flexibility offered by the file
system is not required.

GPL provides eight 32-bit signed integers that are stored in the NVRAM and accessed by DatalD 1892
"GPL program NVRAM variable array". These DatalD values may be freely read or written by GPL
programs or the web interface. The most recent value written is always saved in the NVRAM. The four
bytes that make up each 32-bit value are always written atomically, so each 32-bit value is always valid.

15. Vision Guidance

15. Vision Guidance

The following pages describe how to access the PreciseVision machine vision system from a GPL
procedure and use the vision data in a motion application.

PreciseVision is a software application that runs on a PC. The PC, in turn, is connected to cameras that
acquire images to be processed. The vision processing performed by PreciseVision is specified in terms
of "vision tools" and "vision processes". Details about how to setup and program PreciseVision may be
found in the PreciseVision Machine Vision System, Introduction and Reference Manual.

In order for GPL to send commands to PreciseVision, GPL must know the IP address for the PC that is
executing PreciseVision. This value is specified in the Configuration and Parameter Database in the
"Vision server IP address" (DatalD 424).

The table below summarizes some of the concepts related to vision operations that are mentioned in this
section.

Concept Description

A process that makes requests to a server and handles the responses.
Client Normally a client initiates all communications and does not receive data except
in response to a request.

A process that responds to requests and sends responses. It normally does

Server not initiate 1/0.

A single operation executed by PreciseVision. A typical tool might find an
Vision Tool object (e.g. a Finder Tool), measure a dimension (e.g. an Edge Locator) or
locate a key feature (e.g. a Line Fitter).

A series of vision tools performed on an image by PreciseVision. The tools in
Vision Process the process normally produce Vision Results that are used by a GPL
procedure.

68

The Guidance Programming Language

The output of a Vision Tool that is executed by PreciseVision. A set of Results
may contain pass/fail information, location data, or general numeric data.

Vision Result Some tools only generate a single set of results (e.g. a Line Fitter) while others
generate multiple sets of results (e.g. a Finder). A single set of results is
normally stored in a VisResult object in GPL.

When active, PreciseVision acts as a server that fields requests from client GPL procedures. These client
GPL procedures execute on a Precise Controller and communicate with the PC via Ethernet. By
designing GPL procedures as clients of PreciseVision, GPL procedures have complete control over when
pictures are taken and processed.

To take a picture and analyze its results, a GPL procedure issues a command to PreciseVision to execute
a "vision process". Normally, a vision process consists of a tool that takes a picture (i.e. an Acquisition
Tool) followed by additional tools to process and analyze the picture. In the simplest case, a vision
process consists of a single tool that operates on an existing picture. At times, a process can be quite
complex and might contain dozens of tools that inspect multiple features of parts to verify that the parts
are correct. From GPL's point of view, a vision process is a single, indivisible operation. That is, after a
GPL procedure starts a vision process, no results are available until after the process completes its
execution. When the process is done running, GPL can then interrogate PreciseVision for its results.

In order for GPL to execute a process and retrieve the results, GPL has to know the name that has been
assigned to the process in PreciseVision and the names of any tools for which results are desired. Once
the vision process has completed execution, a GPL procedure can utilize the tool names to retrieve the
results from any tool. These results typically indicate the locations of parts that are to be manipulated and
the type of each part. In addition, vision can be used to check for key dimensions or other features of the
parts and can return information to GPL about the quality of a part. As mentioned above, some tools
return only a single set of results while others can return multiple sets of information.

Each time that a vision process is executed, all of the previous results of its tools are lost and replaced by
the newly computed results. However, if a second vision process is executed using another
communication object, the results of first vision process are preserved.

The following pages provide a summary of the built-in GPL classes and methods that act as an interface
to the PreciseVision system, as well as some simple examples.

15.1. Classes and Methods

The network communication interface between the Precise controller and the PreciseVision system is
implemented by a Vision class and its associated objects. Its methods and properties allow a GPL
procedure to establish a connection with PreciseVision, run a vision process, and obtain the results from
that process.

The VisResult class defines objects that each store a single set of results from a vision tool. These
objects may contain pass/fail information, location data, or general numeric data, depending on the vision
tool.

The tables below summarize the available members for the vision classes. For additional details on
individual vision methods and properties, please see the GPL Dictionary.

| Vision Class Member | Type | Description |

69

The Guidance Programming Language

New Vision

Constructor
Method

Creates an empty Vision object. Does not
communicate with PreciseVision.

vision_object.Disconnect

Method

Closes any open connection associated with a vision
object.

vision_object.ErrorCode

Property

Returns the numeric error code for the last executed
vision process. A value of 0 indicates success; a
negative value indicates an error.

vision_object.Instance

Property

Sets and gets the number of the PreciseVision
instance that is associated with a vision object.

vision_object.IPAddress

Property

Sets and gets the IP address of the PC that is running
the PreciseVision application software associated with
a vision object.

vision_object.Process

Method

Requests that PreciseVision execute a vision process
and waits for it to complete. Connects to PreciseVision
if there is currently no connection.

vision_object.Result

Method

Returns a VisResult object that contains a single set
of results from a previously executed vision

tool. Connects to PreciseVision if there is currently no
connection.

vision_object.ResultCount

Method

Returns the number of sets of vision results created by
A vision tool the last time it was executed. Connects
to PreciseVision if there is currently no connection.

vision_object.Status

Property

Returns a numeric value indicating the status of a
vision process:

0 = No vision process for this object,
1 = Process is running,

P = Process complete but with error,
3 = Process complete with success.

vision_object.ToolProperty

Property

Sets or gets a property value of a PreciseVision tool or
A general "system” property for the vision server
connected to a vision object.

VisResult Class Member

Type

Description

New VisResult

Constructor
Method

Creates an empty VisResult object. Not useful since
VisResult objects are normally created by the
vision object.Result method.

visresult_object.ErrorCode

Property

Returns the numeric error code for this result. A
value of 0 indicates success; a negative value
indicates an error. A positive value indicates a non-
critical error occurred.

visresult_object.Info

Property

Returns the nth numeric information field contained
in this set of results.

visresult_object.InfoCount

Property

Returns the number of numeric information items in
this set of results.

visresult_object.InfoString

Property

Returns a String value if the set of vision results
includes text information.

visresult_object.InspectActual

Property

Returns the value of the tool property that was tested
in the vision inspection process.

visresult_object.InspectPassed

Property

Returns True if a property of the vision results
satisfied the tool's vision inspection criteria.

visresult_object.Loc

Property

Returns the position and orientation from a set of
results as a Cartesian Location object.

70

The Guidance Programming Language

visresult_object ProcessiD Property Returns the ID of the vision process that generated
the result.
visresult_object Type Property Returns the type of this set of results. Currently
always zero.

15.2. Vision Interface

Vision objects are used to communicate with the PreciseVision system. The communications occur
across a TCP/IP Ethernet link between the Precise controller and the PC running PreciseVision. Simply
creating a Vision object does not cause any communication to occur.

The Vision methods Process, Result, and ResultCount all send a request to PreciseVision and wait for
a reply. There is no method to explicitly connect to PreciseVision. A connection is automatically
established when one of these methods is called.

When making a connection, the Precise controller attempts to communicate with TCP port 1410 at the IP
address specified by the parameter database entry "Vision server IP address" (DatalD 424). If a
connection cannot be made, an exception is thrown. Once a request is sent, PreciseVision must respond
within 30 seconds or an exception is generated.

The steps for preparing PreciseVision to service requests and to execute vision processes for a Precise
controller are as follows:

1. Physically connect your Precise controller with the PC running PreciseVision.
Make sure the Ethernet IP addresses are setup properly and the PC can
communicate with the GPL controller.

2. Using PreciseVision on the PC, create a vision process that uses vision tools to
acquire an image and perform the desired vision operations.

3. Make sure that PreciseVision is active and listening for requests.

To develop a vision guidance application that will execute on a Precise controller and communicate with
PreciseVision, write and execute a GPL procedure that does the following:

1. Creates a Vision object to serve as the interface to PreciseVision.

2. Executes a Vision Process method to initiate a vision process in PreciseVision.
The process name specified in this method must match a vision process defined
within PreciseVision.

3. Invokes the ResultCount method to determine how many sets of results were
generated by each vision tool of interest.

4. Accesses the Result method for each vision tool of interest to obtain a VisResult
object that contains the output for the tool.

5. Uses the VisResult class properties and methods to obtain specific vision data
that can be applied in your GPL procedure.

6. Executes the Vision Disconnect method when done with all vision processing to
close the communication connection.

15.3. Vision Procedure Example

In this example, PreciseVision is used to determine the location of a part that is then acquired by the
robot. The output of the vision process is used to create a reference frame, and the robot is moved to a
point relative to that reference frame.

71

The Guidance Programming Language

In particular, the robot moves to the location safe to avoid blocking the camera's field-of-view. The Vision
object vis is then used to connect with PreciseVision and execute the vision process "Main". This vision
process takes a picture and executes vision tools to locate the part and perform any desired visual
verifications. At the end of the vision process, all that GPL requires is the results of the tool “partl”, which
contains the location of the part. The GPL procedure then checks the ResultCount property to ensure
that at least one set of results is available. The Result method returns the first set of results from "partl"
in the VisResult object vResult. The returned vision location is used to create the object vsRefFrame,
which is the reference frame for location vsRelPoint. The robot moves to vsRelPoint and finally moves
back to its safe location.

Public Sub MAIN
Dim vis As New Vision
Dim vResult As New VisResult

Robot.Attached = 1
Move.Loc(safe, vsProfile)

vis.Process(''Main') " Run vision process "Main"

IT vis.ResultCount(partl'™) = 0 Then
Console.Writeline(*"'Vision object not found')
Goto done

End If

VResult = vis.Result("partl™, 1) " Get results

" Create a reference frame object and set it
" equal to the returned vision location

Dim vsRefFrame As New RefFrame
vsRefFrame.Loc.PosWrtRef = vResult.Loc

® Pickup point is relative to new frame
vsRelPoint.RefFrame = vsRefFrame

Move.Approach(vsRelPoint, vsProfile)
Move.Loc(vsRelPoint, vsProfile)
Move.Approach(vsRelPoint, vsProfile)

" Move back to safe location
Move.Loc(safe, vsProfile)

done:
End Sub

16. Managing and Executing GPL Projects

16.1. Projects and Files

In GPL, rather than executing a "program”, a "Project" is the basic executable entity. Console commands
are provided for loading, compiling, and executing a Project. A Project consists of two or more text files
that are stored within a single disk folder (directory). Each file is a standard human-readable ASCII

file. The folder name and the Project name are synonymous.

The file "Project.gpr" must always be present in each project folder and is referred to as the "Project
File". This file contains information on the other files within the Project including which program is
invoked when the Project begins execution.

Each GPL source file has a "gpl" extension. These files each can contain one or more modules, which in-
turn can contain multiple variable declarations and procedures.

72

The Guidance Programming Language

A Project can also contain one, several or no files with a "gpo" extension. This type of file contains a
global module that is used to defined global Location and Profile objects. This file is convenient for
storing taught robot locations and general motion Profiles that are accessible by all procedures within the
Project.

Loading a Project into memory or copying a Project from memory or between disk units is equivalent to
copying a file folder and all of its contents. Multiple Projects can be present in memory although only one
Project can be executed at any given time.

16.2. Modules

Only modules can be found at the outer-most level of a file. [In the future, class declarations will also be
allowed]. These modules contain variable declarations such as Public, Private, and Dim statements, or
procedure declarations such as Sub or Function statements. A procedure or module-level variable can
be accessed by fully specifying its name using the syntax:

module_name.variable_name
-Or-
module_name.procedure_name

Within a single module, all procedures and module-level variables can be freely accessed. However, only
Public procedures and variables in other modules can be accessed. If Public variables or procedures
with the same name are found in two different modules, they can only be accessed by using the fully-
specified name, to disambiguate the multiple definitions.

16.3. Executing a Project

Before a Project can be executed, it must be loaded into memory and compiled. The steps are as
follows:

1. Load the Project and associated files into memory.
2. Issue a compile request for the Project.
3. Issue a start request for the Project.

The Project begins execution at the "start" procedure specified in the Project File (Project.gpr). Note that
the start procedure must be declared Public.

17. Thread Control

17. Thread Control

When a GPL Project begins execution, its main procedure starts running in a user program "thread". Each
thread has its own execution stack and runs independently of all other program and system threads.

The GPL system supports the simultaneous execution of up to 32 GPL user program threads. These
threads allow simultaneous execution of multiple projects. Even more importantly, a main thread can
initiate and control the execution of additional procedures in their own threads. This is very convenient for
the execution of communications servers, digital I/O scanners, and cell control tasks that are best

73

The Guidance Programming Language

executed asynchronously from the main execution thread. In general, executing procedures that operate
asynchronously in their own threads simplifies the design, coding, and debugging of the procedure.

17.1. Thread Synchronization

When multiple GPL threads are employed within a single project, it is often necessary to synchronize
them. For example, a server thread may wait for a client thread to post a command, and the client may
wait for the server to respond.

Two or more threads can efficiently be synchronized by using the SendEvent and WaitEvent methods.
Any GPL thread can send a synchronization message called an event to any other GPL thread. Up to 16
independent events per thread can be sent to permit the receiving thread to discriminate between types
of events. The events are numbered 1 through 16. The target thread uses WaitEvent to efficiently wait for
one or more of these events to be received. While a thread is waiting for an event, it uses almost no CPU
time.

17.2. Thread Scheduling

GPL includes a multi-threaded preemptive priority-driven real-time operating system. User program
threads can be swapped out or preempted by system threads any time the system clock ticks or
whenever an I/O device interrupt occurs. Clock tick interrupts occur every 125 psec (8KHz) and cause the
system to swap out the current thread and begin execution of servo control threads and other high priority
system threads. After the system threads complete, eligible user threads are executed during the
remainder of the time before the next clock tick.

The standard thread scheduling algorithm for normal user threads is a round-robin scheme. In this
approach, each user thread is permitted to execute for up to one millisecond before the next user thread
that is ready to run is swapped in. Since the clock ticks at 8KHz, a user thread runs for up to eight 125
usec ticks. If a user thread is active when the clock ticks, the thread's "remaining tick count” is
decremented by 1, even if it did not run for the entire previous tick. When this count hits 0, the thread is
moved to the end of the round-robin list. After all other user threads and system threads have had a
chance to run, the original thread will move to the start of the round-robin list and will resume execution.

When a thread goes to sleep, is blocked, or is preempted, its remaining tick count is not decremented, so
when it resumes execution, it gets the remainder of the 8 ticks that are left. When a thread is blocked or
uses the Thread.Sleep method, all other threads continue to execute, using whatever time is available.
When a user thread is unblocked or wakes from a sleep, it goes to the end of the round-robin list with
whatever time it had left in its 1 msec interval. When a thread is preempted by a higher priority thread and
resumed, it continues executing for whatever time it has left. It is not put at the end of the round-robin list.

If many user threads and system threads are busy, a given user thread may only get to run for 1 out of n
milliseconds, where n is the number of busy threads. Nonetheless, the standard round-robin scheduling
provides a good balance for most applications. For some time-critical user threads, this scheduling
method may be undesirable.

An alternate scheduling algorithm, enabled by the Thread.Schedule method, allows critical user threads
to run in a timely manner ahead of all other standard-priority threads. This algorithm is based on the
POSIX sporadic scheduling policy. The algorithm schedules specified threads as follows:

e At a fixed repetition rate, any specified high priority user thread has its priority
raised above the standard thread priority.

74

The Guidance Programming Language

o After the high priority thread has run for a specified period of time, the thread's
priority is returned to the standard level, and it is placed at the end of the round-
robin queue of standard-level threads.

e The high priority thread may run at standard priority if it gets to the front of the
round-robin queue before the start of its next high priority period.

For more information on the specifics of the alternative scheduling algorithm, please see the dictionary
page on the Thread.Schedule method.

17.3. The Thread Class

To control the starting, stopping, and monitoring of independent threads, GPL includes a Thread Class
that includes the required methods and properties. In the following table, the members of this Class are
briefly described. Completion information on these class members are provided in the GPL Dictionary

pages.
Member Type Description

Constructor Creates a thread object and associates it with a

New Thread
Method rocedure.

thread_object.Abort Method Stops execution of a thread such that it cannot be

resumed.
thread_object. Argument Property Sets or gets a humeric value that can be used as a

arameter for a thread.

Thread.CurrentThread

Shared Method

Returns a thread object for the currently executing
thread.

thread_object.Join

Method

\Waits for a thread to complete execution, with a
timeout.

thread_object.Name

Get Property

Returns a String containing the name of the thread
associated with this object.

thread_object.Project

Get Property

Returns a String containing the name of the project
associated with this object.

thread_object.Resume

Method

Resumes execution of a thread that was suspended.

Thread.Schedule

Shared Method

IChanges the execution priority and thread scheduling
algorithm for the current thread.

thread_object.SendEvent

Method

Sends an event to a thread to notify it that a
significant transition has occurred.

Thread.Sleep

Shared Method

Causes the current thread to stop execution for a
specified amount of time.

thread_object.Start

Method

Initializes and starts execution of a procedure as an
independent thread.

thread_object.StartProcedure

Get Property

Returns a String containing the name of the start
rocedure associated with this object.

thread_object.Suspend

Method

Suspends execution of a thread so that it can be
resumed.

Thread.TestAndSet

Shared Method

Atomically reads a numeric variable and writes a new
value. Used for restricting access to data shared
between threads.

thread_object.Thread State

Get Property

Returns an integer indicating the execution state of a
thread.

Thread.WaitEvent

Shared Method

ICauses the current thread to wait for an event.

75

The Guidance Programming Language

17.4. Thread-Safe Data Access in GPL

In applications that use more than one user program thread, the operating system dynamically switches
execution of the threads. From instant to instant, there is no guarantee that any particular thread will
continue execution. A thread can be swapped out and another thread swapped in at any moment, even in
the middle of an instruction.

When two or more user program threads access the same data, they may interact in an unexpected way.
For example, if two user threads both attempt to increment the same GPL variable, an intermittent bug
may occur. If both threads execute the statement: a = a + 1, the following may happen, assuming a starts
at value of 0:

Thread Switching Thread Action
Thread 1 is running. Thread 1 reads the value of a. It reads the value 0.
Thread 2 swaps in. Thread 2 reads the value of a. It reads the value 0.
Thread 2 continues. Thread 2 adds 1 to its value and writes it to a.
Thread 1 resumes. Thread 1 adds 1 to the value 0 it read previously, and writes it to a.

Even though both threads intended to add 1 to a, the final value of a is 1 instead of the expected value of
2.

When an operation is thread-safe it means that it produces the same results regardless of whether a
single thread or multiple threads are performing it.

17.4.1. Thread-Safe Data Types in GPL

Numeric and Boolean data reading is always thread-safe. All numeric data types may be read,
regardless of how the data is being written. You will always get one of the values that someone has
written. You can also read numeric data from statically allocated arrays or objects.

Simple writing of numeric data is also thread-safe. If multiple threads write the same variable, the result
will always be one of the values written. If only one thread is writing a numeric variable, there is no need
to interlock the access with threads that are reading.

Operations that first read and then write a numeric variable are not thread-safe, as illustrated by the
example in the previous section. It is always possible for another thread to write the data value while the
original thread is modifying it.

Groupings of numeric values (arrays and objects with multiple embedded values) are not thread-
safe. For example, if one thread changes the X and Y values of a location, a second thread may see a
transient condition where only the X or Y is changed.

String data is not thread safe. If one thread is reading a string value while another thread is writing it,
the reader may see a mixture of the old data and the new data. Simple string assignment is thread-safe
since the final value will be one of the values written. However most string methods that modify the string
values are not thread-safe.

Objects are generally not thread-safe and there is no interlocking among the object fields. However
individual numeric fields within an object are thread-safe.

76

The Guidance Programming Language

Dynamic arrays are not thread-safe, even if they contain numeric data. These are arrays whose sizes
are altered using a ReDim statement to change their size during execution. Using ReDim to change an
array size while other threads are accessing the array could result in a system crash that requires
rebooting.

17.4.2. Creating Thread-Safe Interlocks

Thread-safe interlocks may be created using the GPL Thread.TestAndSet method. This method is fully
described in the GPL Dictionary section. Sample lock and unlock routines are shown below:

" Lock the semaphore. Wait until lock is obtained.
Public Sub acquire_sem(ByRef sem_var As Integer)
While Thread.TestAndSet(sem_var, 1) <> 0
Thread.Sleep(0)
End While
End Sub

" Unlock the semaphore

Public Sub release_sem(ByRef sem_var As Integer)
sem_var = 0

End Sub

This acquire_sem() routine waits indefinitely until the lock can be obtained. If desired, this routine can be
enhanced to wait for a limited time and return an error or throw an exception if that time limit is exceeded.

You can use these routines to lock a thread during an unsafe data access, to guarantee that no unsafe
access occurs. The example below shows how to safely interlock an add operation on a numeric array
element.

Public my_lock As Integer
Public my_array(l) As Integer

Public Sub AddArray(ByVal inc As Integer)

acquire_sem(my_Jlock) ® Prohibit access by other threads

my_array(0) = my_array(0) + inc

release_sem(my_Jlock) " Allow write access by other threads
End Sub

For numeric values, the read operation is thread-safe, so no special action is required, but for a string
operation, both the read and write operations need to be interlocked. The example below shows
interlocking both the read and write operation for a string variable.

Public my_lock As Integer

Public Sub AppendString(ByRef sg As String, Byval app As String)

acquire_sem(my_Jlock) " Prohibit access by other threads

sg &= app " Modify string while locked

release_sem(my_lock) " Allow access by other threads
End Sub

Public Function ReadString(ByRef sg As String) As String
Dim ret_string As String

acquire_sem(my_Jlock) * Prohibit access by other threads
ret_string = sg " Copy string while locked
release_sem(my_Jlock) * Allow access by other threads

Return ret_string
End Function

77

The Guidance Programming Language

18. XML Data Exchange

18. XML Data Exchange

XML (eXtensible Markup Language) is a standard text formatting language derived from SGML (the
Standard Generalized Markup Language, 1SO 8879). It was originally designed to represent documents
for electronic publishing, but it has been adapted to represent structured data for storage and
transmission on networks. Details about XML can be found at http://www.w3.org/XML. The complete
specifications for XML can be found at http://www.w3.org/XML/Core/#Publications.

The GPL implementation of XML is primarily intended to simplify the storage and bi-directional exchange
of structured data between a host computer and a Guidance Controller. For example, the information
contained in both simple and complex data structures (such as GPL Objects) can be easily and efficiently
converted to an XML text file. This file can be stored in flash or transmitted to a host computer where it
can be decoded using standard XML tools. Conversely, an XML file generated on a host computer can be
read by GPL and converted to a tree of information that is readily accessible by a GPL application
program. This data can be used to reconstruct application specific Objects or other data structures.

Given the intended use of XML, the GPL implementation does not include the extensive support required
for general document specification and editing. In particular, it has only limited support for namespaces
and entities.

The GPL methods and properties for handling XML are layered on top of the open-source libxml2 library,
available at http://xmlisoft.org. Links to documentation for this library may be found at that website.

The XML text file contains 7-bit ASCIl or UTF-8 characters that encode the data. Symbols and strings
enclosed in < > have special meaning to XML.

The following lines illustrate some sample XML text:

<?xml version="1.0"?>

<procedureControl cellld="TestCell">
<command>start</command>

</procedureControl>

The first line contains a comment indicating the XML version. The next line begins an entity named
procedureControl that has an attribute named cellld with a value of "TestCell". It is followed by a nested
entity named command with the value of "start". The final line ends the procedureControl entity. Entities
and attributes are part of the Document Object Model described in the next section.

18.1. Document Object Model (DOM)

Because XML historically was designed for electronic publishing, a single, self-contained section of XML
is called a document, even though it may contain arbitrary data. GPL parses existing XML text documents
and creates new XML documents, by converting them to and from a tree structure stored in the
controller's memory. A parsed XML document consists of nodes for items in the document, arranged in a
tree that reflects how items in the document are nested. The tree is constructed using a subset of the
Document Object Model (DOM) Core Interfaces as described in: http://www.w3.0org/TR/REC-DOM-Level-
1 and methods similar to those found in Visual Basic.NET.

78

http://www.w3.org/XML
http://www.w3.org/XML/Core/#Publications
http://xmlsoft.org/
http://www.w3.org/TR/REC-DOM-Level-1
http://www.w3.org/TR/REC-DOM-Level-1

The Guidance Programming Language

The top-level node in a DOM tree is the document node. There is only one such node for each document.
The organization of child nodes in the document corresponds to the organization of the data in the XML
text file. The various child nodes contain the names of the data sections and also the data from the text
document.

All nodes have a type. Some common types are shown in the table below.

Node Type Description
Document The top-level node in a document. Only one such node exists per DOM tree.
The basic node type. An element corresponds to an XML tag that begins with
Element “<”, For example the element named sample begins with “<sample>" and ends

with “</sample>".
An attribute of a node. It normally has either a document or element as its
parent. In XML text, attributes are embedded inside the element name start

Attribute tag. For example an attribute named color of element sample appears as

<sample color="value”>.

The data contents of an element or attribute. It holds whatever is between two
Text " . :

element tags, or the “value” of an attribute.

. A special text node that allows special characters in the data without encoding

CDATA section them. The data starts with “<ICDATA[” and ends with “]]>".
Comment A special text node that contains a comment not considered part (_)f the

document data. The comment data begins with “<?--* and ends with “-->".
Processing A special text node that contains processor-specific information. The
Instruction information data begins with "<?" and ends with "?>".

When an XML text document is parsed, GPL creates a new DOM tree in the controller's memory with
child nodes that contain all the parsed data. The XML classes and methods that are provided in GPL
allow an application program to efficiently access the data contained in the tree. If desired, the data in the
tree may be modified and written back out in the XML text format.

In order to create an XML text file, a GPL program must first create a new document tree in the
controller's memory and add nodes that contain the desired data. An XML method can then be executed
that converts the tree in memory to the XML text format.

18.2. Character Representation

This GPL implementation expects all external character data to be encoded in UTF-8. Since 7-bit ASCII
characters are a subset of UTF-8, all data will be properly interpreted if you confine your data to the 7-bit
ASCII subset.

In addition, XML text files include certain special characters to delimit data sections. The critical
characters are " (double quote), & (ampersand), ' (apostrophe), < (less than), and > (greater than). You
must not use these characters in any name or data fields when creating tree nodes or setting node
values. For efficiency, GPL does not automatically check for these characters or convert them. If you
need to use these characters, you can encode them with the method XmIDoc.EncodeEntities. If you
receive data with encoded entities, you can change them to normal 7-bit ASCII with the method
XmIDoc.DecodeEntities.

79

The Guidance Programming Language

18.3. XmlIDoc Class

GPL includes an XmIDoc class. The objects of this class operate on the top-level of a DOM tree (which
contains an entire XML document). The XmIDoc methods deal with the document as a whole and, except
for a method that allocates new nodes, these methods do not operate on specific nodes in the DOM tree.
For example, this class includes the method for converting an XML text file into a DOM tree and a method
for the reverse operation.

There is one and only one XmIDoc object for each separate XML document that is represented as a
DOM tree. An XML DOM tree cannot exist without an XmlIDoc object. When the last reference to an
XmIDoc object is freed, the entire DOM tree is also freed. Any XmINode objects that refer to nodes in the
tree are marked as invalid.

The XmIDoc class interface is summarized in the following table. Each of these properties and methods
is described in detail in the GPL Dictionary contained in the Software Reference section of the Precise
Documentation Library.

XmlDoc Class Member Type Description

New E:Ac;?sggctor Creates a new document tree with the specified name.

xmidoc_obj.CreateNode Method Returns a new XmlINode object for this document with
the specified type, and name.

xmlDoc.DecodeEntities Shared Method Converts a String containing encoded XML entities
into raw text.

xmldoc_obj. Returns the XmINode element that is the root of the

Method

DocumentElement document.

XmlIDoc.EncodeEntities Shared Method gr?t?t\i/eesrts special characters in a String to XML

xmidoc_obj.ErrorCode Get Property Er?(t)urrns the last parser error code number, or 0 if no

. Loads and parses an XML text document from a file
XmiDoc.LoadFile Shared Method and returns the created XmIDoc DOM tree object.
XmiDoc.LoadString Shared Method Parses an XML text document from a String and

returns the created XmIDoc DOM tree object.
xmldoc_obj.Message Get Property Returns the last parser error message, or " if no error.
Converts a DOM tree document to the XML text
format and writes the data to a file.

Converts a DOM tree document to the XML text
format and writes the data to a String.

xmldoc_obj.SaveFile Method

xmldoc_obj.SaveString Method

18.4. XmINode Class

GPL includes an XmINode class that provides access to and manipulation of individual nodes within a
DOM tree.

XmlINode objects point to DOM nodes but do not actually contain the DOM nodes. When an XmINode
object is created or destroyed, the underlying DOM nodes are not affected provided that they are part of a
DOM tree. If a DOM node is destroyed by releasing the top-level XmIDoc node or by releasing a parent
DOM node, the XmINode object is automatically unlinked from the DOM node and any attempt to use the
XmINode object results in an error.

80

The Guidance Programming Language

The table below summarizes the properties and methods for the XmINode class. Each of these
properties and methods is described in detail in the GPL Dictionary contained in the Software Reference
section of the Precise Documentation Library.

XmINode Class Member Type Description
xmlnode_obj.AddAttribute Method Adds an attribute node as a child of this node.
xminode_obj.AddElement Method IAdds an elemer_wt node as a child of this node.

Includes an optional value.

IAdds an element node as a child of this node.
xminode_obj.AddElementNode | Method Returns an XmINode object for the new node.

Includes an optional value.
xminode_obj.AppendcChild Method Appends a new child node as the last child of this

node. Merges text nodes.

xmlnode_obj.ChildNodeCount

Get Property

Returns the number of children of this node.

Returns a clone of this node. Optionally recursively

xminode_obj.Clone Method clones the subtree under this node.
xmlinode_obj.FirstChild Method Returns the first child of this node.

. . Returns a String containing the value of the
xminode_obj.GetAttribute Method specified attribute that is a child of this node.

. . Returns the node corresponding to the specified
xmlnode_obj.GetAttributeNode | Method Lttribute that is a child of this node.

. Returns a String containing the value of the
xminode_obj.GetElement Method specified element that is a child of this node.
xminode_obj.GetElementNode | Method Returns the node C(_)rrespo_ndlng to the specified

element that is a child of this node.
xminode_obj.HasAttribute Method Returns True if the specified attribute is a child of

this node.

xmlnode_obj.HasChildNodes

Get Property

Returns True if the node has any non-attribute child
nodes.

Returns True if a specified element is a child of this

xmlnode_obj.HasElement Method ode
xminode_obj.InsertAfter Method Inserts a new _node as a child of this node after a
referenced child node. Merges text nodes.
xminode_obj.InsertBefore Method Inserts a new _node as a child of this node before a
referenced child node. Merges text nodes.
xmlnode_obj LastChild Method Returns the last child of this node.
xmlnode_obj.Name Get Property |Returns the node name as a String.
xmlnode_obj.NextSibling Method Returns the next sibling of this node.
xminode_obj.OwnerDocument | Method Returns the XmIDoc associated with this node.
xmlnode_obj.ParentNode Method Returns the parent of this node.
xmlnode_obj.PreviousSibling Method Returns the previous sibling of this node.
xminode_obj.RemoveAttribute | Method ?r(]a”rg?evr(]as a specified attribute from this node's
xminode_obj.RemoveChild Method Removes a child node from the list of children for
this node.
xminode_obj.RemoveElement | Method ?r(]a”rg?evr(]as a specified element from this node's
xmlnode_obj.ReplaceChild Method Replaces an old child node with a new child node.

81

The Guidance Programming Language

xminode_obj.SetAttribute Method _Sets the value_ of an existing specified attribute that
is a child of this node.
xminode_obj.SetElement Method _Sets the value_ of an existing specified element that
is a child of this node.
xmlnode_obj.Type Get Property |Returns the node type as a String.
xminode_obj.Value Method \F/%aeltuuerns the node value as a String or sets the node

18.5. Examples

18.5.1. Reading an XML file

Input parameter file contains the path to the file to read.
" Output parameter doc is an XmlDoc variable that receives the
" parsed XML document that is generated.

Public Sub XmlIReadFile(Byval file As String, ByRef doc As XmlDoc)
Dim exc As Exception
doc = XmlDoc.LoadFile(File)
IT (doc.ErrorCode <> 0) Then
Console.Writeline("Input error " & CStr(doc.ErrorCode) _
& ', " & doc.Message)
exc = New Exception
exc.ErrorCode = doc.ErrorCode
Throw exc
End If
End Sub

18.5.2. Writing an XML file

Input parameter file contains the path to the file to write.
* Input parameter doc is an XmlDoc object that contains the
* document tree that is converted.

Public Sub XmlWriteFile(Byval file As String, ByVal doc As XmlDoc)
Dim exc As Exception
Try
doc.SaveFile(file)
Catch exc
IT doc.ErrorCode <> 0 Then
Console.Writeline("Output error " & _
CStr(doc.ErrorCode) & _
", " & doc.Message)
End If
Throw exc
End Try
End Sub

18.5.3. Accessing data in an XML document tree

Assume we have an XML document tree that was generated from the following XML text:

<?xml version="1.0"7?>
<procedureControl cellld="TestCell">
<command>start</command>
<procedure jobld="090507001" name=""INS">
<type>protocol</type>
<testSet>INS_# 090507001</testSet>
<index>0</index>

82

</procedure>
</procedureControl>

The Guidance Programming Language

The program below analyzes and displays part of the data contained in the tree.

Public Sub XmlParse(ByVal doc As XmlDoc)
Dim root As XmINode
Dim command As XmINode
Dim procedure As XmINode
Dim attr As XmINode
Dim ss As String
root = doc.DocumentElement

command = root.GetElementNode(**'command')

procedure = root.GetElementNode(*'procedure’)

ss = root.GetAttribute(cellld™)

Console.Writeline('cellld = " & ss)
ss = command.Value
Console.Writeline(*"'command = " & sS)
ss = procedure.GetAttribute(jobld™)
Console.Writeline("jobld = " & ss)
ss = procedure.GetElement('"type™)
Console.Writeline("type = " & ss)
ss = procedure.GetElement(''testSet'")
Console.Writeline("typeSet = " & sS)
End Sub

The output produced is:

cellld = TestCell

command = start

jobld = 090507001

type = protocol

typeSet = INS_# 090507001

18.5.4. Searching for an element in the document

If you do not know the structure of a document, you can search for an element by recursively searching
through the tree until you find a match. This method is much slower than looking for an element where

you expect to find it.

Public Sub XmlSearchTree(ByVal node As XmINode, _

ByVal name As String,

ByRef found As XmlINode)

Dim child As XmINode
found = Nothing
IT node.Name = name Then
IT node.Type = "element" Then

Console.Writeline(""Found " & name)

found = node
Return
End If
End If
child = node.FirstChild
While Not child Is Nothing

XmlSearchTree(child, name, found) "recursive call

IT Not found Is Nothing Then
Return
End If
child = child_NextSibling
End While
End Sub

18.5.5. Creating an XML document from a GPL program

83

The Guidance Programming Language

The following program demonstrates how to create the XML document tree that corresponds to the XML
text shown above in the third example. If this document is output using the XmIWriteFile program, the
resulting XML text will be identical in content to the example except for indentation and line breaks.

Public Sub XmlICreate(ByRef doc As XmlDoc)
Dim root As XmINode
Dim elem As XmINode
doc = New XmIDoc(*'procedureControl’)
root = doc.DocumentElement
root.AddAttribute('cellld”, "TestCell™)
root.AddElement(*'command’, "start')
elem = root.AddElementNode(*'procedure'™)
elem_AddAttribute(*"jobld™, "090507001')

elem_AddAttribute(*'name™, "INS'™)
elem_AddElement(*'type", "‘protocol'™)
elem_AddElement(*'testSet", "INS_#_090507001')
elem_AddElement(*'index', *0")

End Sub

18.6. Error Handling

Errors that occur while parsing an XML text document to create a DOM tree or that occur while generating
XML text from an existing DOM tree are accessed by properties of the associated XmIDoc object. The
XmIDoc ErrorCode property contains the last error generated by a major XML operation. These
operations include the LoadString and SaveString methods. Typically, such XML methods generate
much more detailed error information than is reflected in a simple error code. If an XML method
generates an error, the XmIDoc Message method should be examined for additional detailed error
information.

For example, the error code -799 "XML error" has a secondary error number associated with it. To
determine the meaning of the error, check the XmIDoc Message method.

Only severe parsing errors throw an exception, so it is required that the application software test the
ErrorCode method after the LoadFile or LoadString methods are executed.

See the individual XmINode dictionary pages for specifies on each method. In general, if a method
returns an XmINode value, the value will be set to Nothing if an error occurs, otherwise, the method
throws an exception.

The error -801 "No XML node" occurs if you attempt to access a GPL XML object that is not associated
with any XML tree node. This situation can occur if you have an XmINode object that refers to a node,
and then you remove the part of the XML tree that contains that node. For example, this can occur if you
release the XmIDoc object that contains the entire document or you use the XmINode RemoveChild
method for the referenced node or one of its parents.

19. Misc. Unsupported Features

GPL does not support conditional compilation and its associated directives, e.g. #If.

84

	Guidance Programming Language
	Introduction to GPL
	The Guidance Programming Language
	1. GPL Overview
	2.Statement structure
	3. Data Type and Variables
	3.1. Basic Data Types
	3.2. Variable Declarations
	3.3. Data Type Arrays
	3.4. Scope of Names

	4. Objects and Classes
	4. Objects and Classes
	4.1. Objects, Fields, Properties and Methods
	4.2. Classes of Objects
	4.3. The Dot “.” Operator
	4.4. Object Variables and the New Clause
	4.5. Copying Object Variables and Values
	4.6. Objects as Procedure Arguments
	4.7. User-Defined Classes
	4.8. Limitations

	5. Arithmetic Operations
	5.1. Arithmetic Expressions
	5.2. Arithmetic Functions and Methods

	6. Strings and String Expressions
	7. Assignment Statements
	8. Control Structures
	9. Procedures, Delegates and Modules
	9.1. Subroutines and Functions
	9.2. Delegates
	9.3. Modules

	10. Exception Handling
	11. Motion and Controller Related Classes
	11. Motion and Controller Related Classes
	11.1. Signal Class
	11.2. Location Class and Objects
	11.3. Profile Class and Objects
	11.4. Move Class
	11.5. RefFrame Class and Objects
	11.6. Controller Class
	11.7. Robot Class
	11.8. Latch Class

	12. Networking Communications
	12. Networking Communications
	12.1. Networking Definitions and Classes
	12.2. TCP Server
	12.3. TCP Client
	12.4. UDP Server and Client

	13. MODBUS/TCP Communications
	13. MODBUS/TCP Communications
	13.1. Modbus Class
	13.2. Modbus Master Connection
	13.3. Modbus Master Examples

	14. File I/O, Serial I/O and Streams
	14. File I/O, Serial I/O and Streams
	14.1. Classes and Methods
	14.2. File I/O
	14.3. Serial I/O
	14.4. Console Output
	14.5. Non-Volatile Memory (NVRAM)

	15. Vision Guidance
	15. Vision Guidance
	15.1. Classes and Methods
	15.2. Vision Interface
	15.3. Vision Procedure Example

	16. Managing and Executing GPL Projects
	17. Thread Control
	17. Thread Control
	17.1. Thread Synchronization
	17.2. Thread Scheduling
	17.3. The Thread Class
	17.4. Thread-Safe Data Access in GPL

	18. XML Data Exchange
	18. XML Data Exchange
	18.1. Document Object Model (DOM)
	18.2. Character Representation
	18.3. XmlDoc Class
	18.4. XmlNode Class
	18.5. Examples
	18.6. Error Handling

	19. Misc. Unsupported Features

