Guidance Programming Language
GPL Dictionary Pages

P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

GPL Dictionary Pages
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Brooks Automation

Information provided within this document is subject to change without notice, and although believed to be
accurate, Brooks Automation assumes no responsibility for any errors, omissions, or inaccuracies.

AcuLigner™, Advan Tag™, AutoTeach™, ATR™, AXM™ BiSymmetrik™, CenterSmart™, Crate to Operate™,
CrossingConnect™, DARTS™, Enerta™, e-RMA™, e-Spares™, e-Volution™, Falcon™, FIXLOAD™, FrogLeg™,
GuardianPro™, Independent Twin Linear Exchange™, InCooler™, InLigner™, Isoport™, ITLX™, Jet™, Jet Engine™,
LEAP™, LeapFrog™, LowProfile™, LPT™, M2 Nano™, Marathon 2, Marathon Express, PASIV™, Pathway™,
PowerPak™, PowerTools™, PuroMaxx™, QuadraFly™, Radius™, Radient™, Radient Express™, Reliance™, Reliance
ATR™, RetroEase™, SCARA™, SmartPM™, SMIF-INX™, SMIF-LPT™, SPOTLevel™, The New Pathway to
Productivity™, Time Optimized Trajectory™, Time Optimal Trajectory™, Time Optimized Path™, TopCooler™,
TopLigner™, VacuTran™, VersaPort™, WaferEngine™, LEAP™, Pathway™, GIO, GSB, Guidance 6410, Guidance
6420, Guidance 6430, Guidance 6000, Guidance 6600, Guidance 3400, Guidance 3300, Guidance 3200, Guidance
2600, Guidance 2400, Guidance 2300, Guidance 2200, Guidance 1400, Guidance 1300, Guidance 1200, Guidance
0200 Slave Amplifier, Guidance 0006, Guidance 0004, Guidance Controller, Guidance Development Environment,
GDE, Guidance Development Suite, GDS, Guidance Dispense, Guidance Input and Output Module, Guidance
Programming Language, GPL, Guidance Slave Board, Guidance System, Guidance System D4/D6, PreciseFlex™
300, PreciseFlex™ 400, PreciseFlex™ 3400, PreciseFlex™ 1300, PreciseFlex™ 1400, PreciseFlex™ DD4,
PreciseFlex™ DDG6, PreciseFlex™ DDR, PreciseFlex™ G5400, PreciseFlex™ G5600, PreciseFlex™ G6400,
PreciseFlex™ G6410, PreciseFlex™ G6420, PreciseFlex™ G6430, PreciseFlex™ G6600, PreciseFlex™ GSBP Slave
Amp, PreciseFlex™ PFDO, PrecisePlace 100, PrecisePlace 0130, PrecisePlace 0140, PrecisePlace 1300, PrecisePlace
1400, PrecisePlace 2300, PrecisePlace 2400, PrecisePower 300, PrecisePower 500, PrecisePower 1000,
PrecisePower 2000, PreciseVision, and RIO logos are trademarks of Brooks Automation.

Fusion®, Guardian®, MagnhaTran®, Marathon®, Razor®, Spartan®, Vision®, Zaris®, and the Brooks and design
logo are registered U.S. trademarks of Brooks Automation.

All other trademarks are properties of their respective owners.

© 2021 Brooks Automation. All rights reserved. The information included in this manual is proprietary information
of Brooks Automation, and is provided for the use of Brooks customers only and cannot be used for distribution,
reproduction, or sale without the express written permission of Brooks Automation.

This technology is subject to United States export Administration Regulations and authorized to the destination
only; diversion contrary to U.S. law is prohibited.

Brooks Automation

Brooks Automation
Precise Collaborative
Robotics

201 Lindbergh Avenue
Livermore, CA 94551
Tel: +1-510-498-1130

Brooks Automation
15 Elizabeth Drive
Chelmsford, MA
01824-2400

Tel: +1 978-262-2400
Fax: +1 978-262-2500

(Germany) GmbH
Daimler-StraBe 7
78256 Steiplingen,
Germany

Tel: +49-7732-9409-0
Fax: +49-7732-9409-
200

Brooks Automation
46702 Bayside Pkwy
Fremont, CA 94538
Tel: +1-510-661-5000
Fax: +1-510-661-5166

Copyright © 2022, Brooks Automation, Inc.

GPL Dictionary Pages
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

\\

Brooks

For Technical Support:

Corporate Headquarters
15 Elizabeth Drive
Chelmsford, MA 01824 U.S.A.

Brooks Automation

Precise Collaborative Robotics
201 Lindbergh Avenue

Livermore, CA 94551 U.S.A

Location

Contact Number

Website

North America

+1-510-498-1130 (Precise)
+1-800-447-5007 (Toll Free)
+1-978-262-2900 (Local)

+49 800 000 9347 (Toll Free Germany)

http://www.preciseautomation.com

Europe +49 364 176 9999 6 (Has Toll)
Japan +81 120-255-390 (Toll Free)

P +81 45-330-9005 (Local)
China +86 21-5131-7066
Taiwan +886 080-003-5556 (Toll Free)

+886 3-5525258 (Local)

Korea 1800-5116 (Toll Free)

. +65 1-800-4-276657 (Toll Free)
Singapore

+65 6309 0701 (Local)

Copyright © 2022, Brooks Automation, Inc.

http://www.preciseautomation.com/
http://www.preciseautomation.com/

GPL Dictionary Pages
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Revision History

Revision

ECO

Number

Date

Explanation of Changes

Rev 5.0.0

TBD

April 9, 2022

First version as Brooks

Copyright © 2022, Brooks Automation, Inc.

GPL Dictionary Pages
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Warning Labels

The following warning and caution labels are utilized throughout this manual to convey critical information
required for the safe and proper operation of the hardware and software. It is extremely important that all
such labels are carefully read and complied with in full to prevent personal injury and damage to the
equipment.

There are four levels of special alert notation used in this manual. In descending order of importance,
they are:

DANGER: This indicates an imminently hazardous situation, which, if not
avoided, will result in death or serious injury.

WARNING: This indicates a potentially hazardous situation, which, if not
avoided, could result in serious injury or major damage to the equipment.

CAUTION: This indicates a situation, which, if not avoided, could result in minor
injury or damage to the equipment.

NOTE: This provides supplementary information, emphasizes a point or
procedure, or gives a tip for easier operation

5 Copyright © 2022, Brooks Automation, Inc.

GPL Dictionary Pages
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Table Of Contents

GPL Dictionary Pages Summary 19
Array Class 21
Array Class Summary 21
array.GetUpperBound Property 22
array.Length Property 23
array.Rank Property 24
Console Class 25
Console Class Summary 25
Console.Write Method 26
Console.WriteLine Method 28
Controller Class 30
Controller Class Summary 30
Controller.Command Method 32
Controller.ErrorLog Property 34
Controller.Load Method 36
Controller.PDb Property 37
Controller.PDbNum Property 39
Controller.PowerEnabled Property 41
Controller.PowerState Property 43
Controller.RecordButton Property 45
Controller.ShowDialog Method - Basic Modes 46
Controller.ShowDialog Method - Advanced Mode 50
Controller.ShowDialogMCP Method 55
Controller.SleepTick Method 58
Controller.SoftEStop Property 59
Controller.SystemMessage Method 60
Controller.SystemSpeed Property 61
Controller.Tick Property 62
Controller.Timer Property 63

6 Copyright © 2022, Brooks Automation, Inc.

Brooks Automation
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Controller.Unload Method 65
Exception Handling 66
Exception Handling Summary 66
Catch Statement 68
End Try Statement 69
Exit Try Statement 70
Finally Statement 71
Throw Statement 72
Try..Catch..Finally..End Try Statements 74
exception_object.Axis Property 78
exception_object.Clone Method 79
exception_object.ErrorCode Property 80
exception_object.Message Method 81
exception_object.Qualifier Property 82
exception_object.RobotError Property 83
exception_object.RobotNum Property 84
exception_object.UpdateErrorCode Method 85
File and Serial 1/0 Classes 87
File and Serial I/O Classes Summary 87
File.ComputeCRC Function 89
File.ComputeLength Function 90
File.Copy Method 91
File.CreateDirectory Method 93
File.DeleteDirectory Method 94
File.DeleteFile Method 95
File.GetDirectories Method 96
File.GetFiles Method 97
File.Length Function 98
New StreamReader Constructor 99
streamreader_object.Close Method 100
streamreader_object.Peek Method 101

Copyright © 2022, Brooks Automation, Inc.

GPL Dictionary Pages
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Functions

Function Summary
CBool Function
CByte Function
CDbl Function
Cint Function
CShort Function
CSng Function
CStr Function
Fix Function
Hex Function
Int Function

Rnd Function

Latch Class

Latch Class Summary

streamreader_object.Read Method 102
streamreader_object.ReadLine Method 103
New StreamWriter Constructor 104
streamwriter_object.AutoFlush Property 106
streamwriter_object.Close Method 107
streamwriter_object.Flush Method 108
streamwriter_object.NewLine Property 109
streamwriter_object.Write Method 110
streamwriter_object.WriteLine Method 111
113
113
114
116
118
120
122
124
126
128
130
132
134
136
136
latch_object.Angle Property 138
Latch.Count Shared Property 139
latch_object.ErrorCode Property 140
Latch.Flush Shared Method 141
latch_object.Location Method 142
Latch.Result Shared Method 143
145

latch_object.Signal Property

Copyright © 2022, Brooks Automation, Inc.

Brooks Automation
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Latch.ThreadEvent Shared Property 147
latch_object. Timestamp Property 149
Location Class 151
Location Class Summary 151
location_object.Angle Property 154
location_object.Angles Method 155
location_object.Clone Method 156
location_object.Config Property 157
location_object.ConveyorLimit Method 159
Location.Distance Method 161
location_object.Here Method 162
location_object.Here3 Method 164
location_object.Inverse Method 166
location_object.KineSol Method 168
location_object.Mul Method 170
location_object.Normalize Method 172
location_object.Pitch Property 173
location_object.Pos Property 175
location_object.PosWrtRef Property 178
location_object.RefFrame Property 180
location_object.Roll Property 181
location_object.Text Property 183
location_object.Type Property 184
location_object.X Property 186
location_object.XYZ Method 188
location_object.XYZInc Method 190
Location.XYZValue Method 192
location_object.Y Property 194
location_object.Yaw Property 196
location_object.Z Property 198
location_object.ZClearance Property 200
location_object.ZWorld Property 202

Copyright © 2022, Brooks Automation, Inc.

GPL Dictionary Pages
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Math Class 204
Math Class Summary 204
Math.Abs Method 206
Math.Acos Method 207
Math.Asin Method 208
Math.Atan Method 209
Math.Atan2 Method 211
Math.Ceiling Method 213
Math.Cos Method 214
Math.Cosh Method 215
Math.E Method 216
Math.Exp Method 217
Math.Floor Method 218
Math.Log Method 219
Math.Log10 Method 220
Math.Max Method 221
Math.Min Method 222
Math.PI Method 223
Math.Pow Method 224
Math.Sign Method 225
Math.Sin Method 226
Math.Sinh Method 227
Math.Sqrt Method 228
Math.Tan Method 229
Math.Tanh Method 230

Modbus Class 231
Modbus Class Summary 231
modbus_object.Close Method 232
modbus_object.ReadCoils Method 233
modbus_object.ReadDevicelD Method 235
modbus_object.ReadDiscretelnputs Method 237
modbus_object.ReadHoldingRegisters Method 239

10 Copyright © 2022, Brooks Automation, Inc.

Brooks Automation
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

modbus_object.ReadInputRegisters Method 241
modbus_object. Timeout Property 243
modbus_object.WriteMultipleCoils Method 244
modbus_object.WriteMultipleRegisters Method 245
modbus_object.WriteSingleCoil Method 246
modbus_object.WriteSingleRegister Method 247
Move Class 248
Move Class Summary 248
Move.Approach Method 250
Move.Arc Method 252
Move.Circle Method 255
Move.Delay Method 258
Move.Extra Method 259
Move.ForceOverlap Method 261
Move.Loc Method 266
Move.OneAxis Method 268
Move.Rel Method 270
Move.SetJogCommand Method 272
Move.SetRealTimeMod Method 275
Move.SetSpeeds Method 277
Move.SetTorques Method 279
Move.StartJogMode Method 281
Move.StartRealTimeMod Method 283
Move.StartSpeedDAC Method 290
Move.StartTorqueCntrl Method 294
Move.StartVelocityCntrl Method 296
Move.StopSpecialModes Method 299
Move.Trigger Method 300
Move.WaitForEOM Method 304
Networking Classes 305
Networking Classes Summary 305

Copyright © 2022, Brooks Automation, Inc.

GPL Dictionary Pages
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

New IPEndPoint Constructor 307
ipendpoint_object.IPAddress Property 308
ipendpoint_object.Port Property 309
socket_object.Available Property 310
socket_object.Blocking Property 311
socket_object.Close Method 312
socket_object.Connect Method 313
socket_object.KeepAlive Property 314
socket_object.Receive Method 316
socket_object.ReceiveFrom Method 318
socket_object.ReceiveTimeout Property 320
socket_object.RemoteEndPoint Property 321
socket_object.Send Method 322
socket_object.SendTimeout Property 324
socket_object.SendTo Method 325
New TcpClient Constructor 327
tcpclient_object.Client Method 328
tcpclient_object.Close Method 329
New TcpListener Constructor 330
tcplistener_object.AcceptSocket Method 331
tcplistener_object.Close Method 332
tcplistener_object.Pending Property 333
tcplistener_object.Start Method 334
tcplistener_object.Stop Method 335
New UdpClient Constructor 336
udpclient_object.Client Method 337
udpclient_object.Close Method 338
Profile Class 339
Profile Class Summary 339
profile_object.Accel Property 341
profile_object.AccelRamp Property 343
profile_object.Clone Method 345

12 Copyright © 2022, Brooks Automation, Inc.

Brooks Automation
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

profile_object.Decel Property 346
profile_object.DecelRamp Property 348
profile_object.InRange Property 350
profile_object.Speed Property 352
profile_object.Speed2 Property 354
profile_object.Straight Property 356
profile_object. Text Property 358
Reference Frame Class 359
RefFrame Class Summary 359
refframe_object.ConveyorOffset Property 362
refframe_object.ConveyorRobot Property 364
refframe_object.Loc Property 366
refframe_object.Palletindex Property 368
refframe_object.PalletMaxIindex Property 370
refframe_object.PalletNextPos Method 372
refframe_object.PalletOrder Property 374
refframe_object.PalletPitch Property 376
refframe_object.PalletRowColLay Method 377
refframe_object.Pos Method 379
refframe_object.PosWrtRef Method 381
refframe_object.Text Property 383
refframe_object. Type Property 384
Robot Class 386
Robot Class Summary 386
Robot.Attached Property 389
Robot.Base Property 391
Robot.CartMode Property 393
Robot.Custom Property 395
Robot.DefLinComp Method 397
Robot.Dest Property 400
Robot.DestAngles Property 402

Copyright © 2022, Brooks Automation, Inc.

GPL Dictionary Pages
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Robot.Home Method 404
Robot.HomeAll Method 405
Robot.JointToMotor Method 406
Robot.LastProfile Property 408
Robot.MotorTempStatus Property 409
Robot.MotorToJoint Method 411
Robot.Payload Property 413
Robot.RapidDecel Property 415
Robot.RealTimeModAcm Property 417
Robot.RestartBase Property 419
Robot.RestartTool Property 420
Robot.Selected Property 421
Robot.Source Property 422
Robot.SourceAngles Property 424
Robot.SpeedAngles Property 426
Robot.Tool Property 428
Robot.TrajState Property 430
Robot.Where Property 433
Robot.WhereAngles Property 435
Signal Class 437
Signal Class Summary 437
Signal.AlO Property 438
Signal.DIO Property 440
Statements 443
Statements Summary 443
Call Statement 445
Case, Case Else Statements 447
Class Statement 448
Const Statement 449
Delegate Statement 451
Dim Statement 454

14 Copyright © 2022, Brooks Automation, Inc.

Brooks Automation
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Do...Loop Statements 456
Else, ElselF Statements 459
End Statements 460
Exit Statements 461
For...Next Statements 462
Function Statement 465
Get Statement 468
GoTo Statement 469
If.. Then...Else...End If Statements 471
Loop Statements 474
Module Statement 475
Next Statements 476
Property Statement 477
ReDim Statement 480
Return Statement 482
Select...Case...End Select Statements 483
Set Statement 486
Sub Statement 488
While...End While Statements 490
Strings 492
String Summary 492
String.Compare Method 494
string.IndexOf Method 496
string.Length Property 498
string.Split Method 499
string.Substring Method 500
string. ToLower Method 501
string. ToUpper Method 502
string. Trim Method 503
string. TrimEnd Method 504
string. TrimStart Method 505
Asc Function 506

Copyright © 2022, Brooks Automation, Inc.

GPL Dictionary Pages

P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Chr Function
Format Function
FromBitString Function
Instr Function
LCase Function

Len Function

Mid Function
ToBitString Function

UCase Function

Thread Class

507
508
511
513
515
516
517
519
521

522

Thread Class Summary

New Thread Constructor
thread_object.Abort Method
thread_object.Argument Property

Thread.CurrentThread Shared Method

thread_object.Join Method
thread_object.Name Property
thread_object.Project Property
thread_object.Resume Method
Thread.Schedule Shared Method
thread_object.SendEvent Method
Thread.Sleep Shared Method
thread_object.Start Method

thread_object.StartProcedure Property

thread_object.Suspend Method
Thread.TestAndSet Shared Method
thread_object. ThreadState Property
Thread.WaitEvent Shared Method

Vision Classes

522
524
526
527
529
530
531
532
533
534
538
539
541
542
543
544
546
547

550

Vision Classes Summary

vision_object.Disconnect Method

550
552

16

Copyright © 2022, Brooks Automation, Inc.

Brooks Automation
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

vision_object.ErrorCode Property 553
vision_object.Instance Property 554
vision_object.IPAddress Property 555
vision_object.Process Method 556
vision_object.Result Method 558
vision_object.ResultCount Method 560
vision_object.Status Property 562
vision_object.ToolProperty Property 564
visresult_object.ErrorCode Property 570
visresult_object.Info Property 571
visresult_object.InfoCount Property 572
visresult_object.InfoString Property 573
visresult_object.InspectActual Property 574
visresult_object.InspectPassed Property 575
visresult_object.Loc Property 577
visresult_object.ProcessID Property 579
visresult_object.Type Property 580
XML Classes 581
XML Classes Summary 581
New XmlIDoc Constructor 584
xmldoc_object.CreateNode Method 585
XmiIDoc.DecodeEntities Shared Method 587
xmldoc_object.DocumentElement Method 589
XmiIDoc.EncodeEntities Shared Method 590
xmldoc_object.ErrorCode Property 592
XmlDoc.LoadFile Shared Method 593
XmlDoc.LoadString Shared Method 595
xmldoc_object.Message Property 597
xmldoc_object.SaveFile Method 598
xmldoc_object.SaveString Method 600
xmlnode_object.AddAttribute Method 602
xmlnode_object. AddElement Method 603

Copyright © 2022, Brooks Automation, Inc.

GPL Dictionary Pages
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

xmlnode_object. AddElementNode Method
xmlnode_object.AppendChild Method
xmlnode_object.ChildNodeCount Property
xmlnode_object.Clone Method
xmlnode_object.FirstChild Method
xmlnode_object.GetAttribute Method
xmlnode_object.GetAttributeNode Method
xmlnode_object.GetElement Method
xmlnode_object.GetElementNode Method
xmlnode_object.HasAttribute Method
xmlnode_object.HasChildNodes Property
xmlnode_object.HasElement Method
xmlnode_object.InsertAfter Method
xmlnode_object.InsertBefore Method
xmlnode_object.LastChild Method
xmlnode_object.Name Property
xmlnode_object.NextSibling Method
xmlnode_object.OwnerDocument Method
xmlnode_object.ParentNode Method
xmlnode_object.PreviousSibling Method
xmlnode_object.RemoveAttribute Method
xmlnode_object.RemoveChild Method
xmlnode_object.RemoveElement Method
xmlnode_object.ReplaceChild Method
xmlnode_object.SetAttribute Method
xmlnode_object.SetElement Method
xmlnode_object.Type Property

xmlnode_object.Value Property

604
605
607
608
610
611
612
614
615
617
618
619
620
622
624
625
626
627
628
629
630
631
632
633
635
636
637
639

18

Copyright © 2022, Brooks Automation, Inc.

Brooks Automation

GPL Dictionary Pages Summary

P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

GPL Dictionary Pages Summary

The Guidance Programming Language Dictionary Pages provide detailed information on each instruction,
keyword, function, and class property and method that is available in GPL. For convenience, these

descriptions are group either by their class or by their major function. Within each group they are sorted

alphabetically.

In general, instruction names, keywords, function names, group names, and property and method names
are indicated in bold. User specified variable names are indicated in italics. Sample GPL program
shippets are presented in the Courier font.

The following table summarizes each of the major groups of descriptions.

Group

Description

Array Class

Provides the properties of any type of variable array.

Console Class

Provides methods for performing output to the serial
console or to the GDE console window.

Controller Class

Provides access to general facilities provided by the
motion control hardware such as power control, timers,
etc.

Exception Handling

Includes statements for fielding execution exceptions and
the Exception Class for storing exception information.

File and Serial 1/0 Classes

Provides File, StreamReader and StreamWriter classes
that implement file and serial line input and output
communications.

Includes standard functions, such as conversion routines,

Functions that do not fall into a specific class.
Provides access to the results of latch input events,
Latch Class including the time and robot position when the latch

occurred.

Location Class

Defines positions and orientations of the robot and
objects.

Math Class

Provides the standard arithmetic and trigonometric
functions.

Modbus Class

Permits programs to communicate with other intelligent
devices using the MODBUS/TCP Ethernet
communication protocol.

Move Class

Provides the basic methods for executing a motion
between Locations using Profiles.

Networking Classes

Classes for Ethernet network communications. Includes
IPEndPoint Class for specifying IP and port addresses;
Socket Class that provides basis for networking 1/0
operations; TcpListener Class for TCP server

applications; TcpClient Class for TCP client applications;

Copyright © 2022, Brooks Automation, Inc.

19

GPL Dictionary Pages Summary GPL Dictionary Pages
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

and UdpClient Class for UDP server and client
applications.
Defines sets of parameters that specify the trajectory to
be followed when moving between Locations.
Defines robot and part reference frames. Cartesian
RefFrame Class Locations and RefFrames can be defined with respect
to a RefFrame.
Provides access to the attributes and properties of each
robot such as their current position and homing methods.
. Reads and writes digital, analog and other simple means
Signal Class .

of input and output.
Includes control structures, user procedures and
functions, and other common language elements.
Strinas Pr_ovides Stri_ng manipulation methods in an Object
e oriented fashion.
Provides the means for starting, stopping, and monitoring
the execution of independent threads.
Provides the means for interfacing to PreciseVision and
easily generating vision-guided motion applications.
Provides the ability to create, parse, and modify XML
(eXtensible Markup Language) documents. This facility
enables structured data to be bi-directionally exchanged
with a host computer using a standard data format.

Profile Class

Robot Class

Statements

Thread Class

\Vision Classes

XML Classes

20 Copyright © 2022, Brooks Automation, Inc.

Brooks Automation
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Array Class

Array Class

Array Class Summary

The following pages provide detailed information on the properties and methods of the

Array Class.

Array variables of all types (e.g. Strings, Locations, Integers) are members of the built-
in Array Class. You can use the properties of this class to determine the properties of an

array.

The table below briefly summaries the properties and methods for this class, which are

described in greater detail in the sections that follow.

Member Type

Description

array.GetUpperBound Get Property

Returns the upper bound for a particular
dimension of an array. The lower bound is
always 0, so the total number of elements
in this dimension is one greater than the

upper bound.

array.Length Get Property

Returns the total number of elements in the
entire array, in all dimensions.

array.Rank Get Property

Returns the array rank, which is the

number of dimensions in an array.

Copyright © 2022, Brooks Automation, Inc.

21

Array Class GPL Dictionary Pages
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

array.GetUpperBound Property

Returns the maximum allowed array index for a particular dimension of an array.
...array.GetUpperBound(dimension)

Prerequisites

None
Parameters
dimension
A required numeric expression that specifies the index, from 0 to rank-1,
of the dimension whose upper bound should be returned.
Remarks

In GPL, all array dimension indices start at 0 and end at the upper bound. This upper
bound is the same value specified in a Dim or ReDim statement. The number of
elements in an array dimension is 1 plus the upper bound value.

Examples

Dim array(3,4) As Integer
Dim d1, d2 As Integer

dl = array.GetUpperBound(0) " Returns the value 3
d2 = array.GetUpperBound(1) " Returns the value 4
See Also

Array Class | array.Length | Dim Statement | ReDim Statement

22 Copyright © 2022, Brooks Automation, Inc.

Brooks Automation
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Array Class

array.Length Property

Returns the total number of elements in an entire array.
...array.Length

Prerequisites
None

Parameters
None

Remarks

In GPL, all array dimension indices start at 0 and end at the upper bound. The Length
may be computed by multiplying (1+upper bound) of all array dimensions.

Do not be confused when using the Length property with String arrays. For example,

you declare: Dim sarray(3) As String.
sarray.Length is the number of elements in the array, in this case 4

(from 0 to 3).
sarray(0).Length is the length of the string contained in sarray(0), initially

Examples

Dim array(3,4) As Integer
Dim length As Integer
length = array.Length " Returns the value 20 = (1+3)*(1+4)

See Also

Array Class | array.GetUpperBound| Dim Statement | ReDim Statement

if

Copyright © 2022, Brooks Automation, Inc.

23

Array Class GPL Dictionary Pages
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

array.Rank Property

Returns the total number of dimensions (the rank) in the array.
...array.Rank

Prerequisites
None
Parameters
None
Remarks
The Rank of an array is the number of dimensions in that array.

Examples

Dim array(3,4) As Integer
Dim array2(5) As Integer
Dim r1l, r2 As Integer

rl = array.Rank " Returns 2
r2 = array2.Rank " Returns 1
See Also

Array Class | Dim Statement | ReDim Statement

24 Copyright © 2022, Brooks Automation, Inc.

Brooks Automation Console Class
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Console Class

Console Class Summary

The following pages provide detailed information on the methods of the global Console
Class. These methods support simple output to the GPL console.

The actual destination of console output depends on the presence of the -event switch on
the Start console command. [f -event is not present, console output is sent to the first
serial port named "/dev/icom1". If -event is present, console output is sent to GDE where
it is displayed in the GPL Output window.

The table below briefly summaries the properties and methods for this class, which are
described in greater detail in the sections that follow.

Member Type Description
. Shared Diagnostic method that writes a number or
Console.Write .
- Method a string to the console.
Diagnostic method that writes a number or
Shared

Console.WriteLine a string to the console, followed by a line

feed (LF) character.

Method

Copyright © 2022, Brooks Automation, Inc. 25

Console Class GPL Dictionary Pages
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Console.Write Method

Diagnostic method that writes a numeric or string value to the GPL console with no line
terminator.

Console.Write (number)
-Or-
Console.Write (string)

Prerequisites

None
Parameters
number
A required numeric expression whose value is displayed.
string
A required string expression whose value is displayed.
Remarks

This method writes a single numeric or string value to the GPL console with no line
terminator. Subsequent output continues on the same line. For output that combines
both string and numeric values, use the CStr function.

The actual destination for console output depends on how the currently executing thread
was started and whether or not the -event switch is present in the Start console
command. If a thread is started by another thread, the destination depends on how the
original thread was started.

Thread Start Source -event Specified | Console Output Destination

Serial console on /dev/com1 No dev/com1 serial port

Serial console on /dev/com1 Yes GDE GPL Output window

GDE N/A GDE GPL Output window
Operator Control Panel N/A dev/com1 serial port

TELNET Yes GDE GPL Output window
TELNET (DatalD 411=1) No dev/com1 serial port

TELNET (DatalD 411=2) No TELNET connection

26 Copyright © 2022, Brooks Automation, Inc.

Brooks Automation
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Console Class

Because the console output destination may vary, it is best to only use this method for
debugging. To always do output to the /dev/icom1l serial port, use the StreamWriter
Class methods specifying device /dev/icoml. To send messages to the system operator,
use the Controller.SystemMessage method.

Examples

Console._Write("Test ") " Produces the output: "Test 1"
Console.Write(l)

See Also

Console Class | Console.WriteLine | Controller.SystemMessage | CStr Function |
StreamWriter Class

Copyright © 2022, Brooks Automation, Inc.

27

Console Class GPL Dictionary Pages
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Console.WriteLine Method

Diagnostic method that writes a numeric or string value to the GPL console followed by a
line terminator.

Console.WriteLine (number)
-Or-
Console.WriteLine (string)

Prerequisites

None
Parameters
number
A required numeric expression whose value is displayed.
string
A required string expression whose value is displayed.
Remarks

This method writes a single numeric or string value to the GPL console followed by a line
terminator. Subsequent output appears on the next line. For output that combines both
string and numeric values, use the CStr function.

The actual destination for console output depends on how the currently executing thread
was started and whether or not the -event switch is present in the Start console
command. If a thread is started by another thread, the destination depends on how the
original thread was started.

Thread Start Source -event Specified | Console Output Destination

Serial console on /dev/com1 No dev/com1 serial port

Serial console on /dev/com1 Yes GDE GPL Output window

GDE N/A GDE GPL Output window
Operator Control Panel N/A dev/com1 serial port

TELNET Yes GDE GPL Output window
TELNET (DatalD 411=1) No dev/com1 serial port

TELNET (DatalD 411=2) No TELNET connection

28 Copyright © 2022, Brooks Automation, Inc.

Brooks Automation Console Class
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Because the console output destination may vary, it is best to only use this method for
debugging. To always do output to the /dev/icom1l serial port, use the StreamWriter
Class methods specifying device /dev/icoml. To send messages to the system operator,
use the Controller.SystemMessage method.

Examples

Console._WriteLine("Test ") " Produces the output: Test

Console.WriteLine(1) - 1
Dim ii As Integer
For 1i = 1 To 10
Console.WriteLine("The square of " & CStr(ii) _
& " is " & CStr(ii*ii))
Next ii
See Also

Console Class | Console.Write | Controller.SystemMessage| CStr Function | StreamWriter Class

Copyright © 2022, Brooks Automation, Inc. 29

Brooks Automation
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Controller Class

Controller Class

Controller Class Summary

The following pages provide detailed information on the properties and methods of the

global Controller Class. This class provides access to the general facilities provided by

the Guidance Controller, e.g. high power control, E-Stop logic, configuration database
values, etc. As such, this class and all of its members are uniquely defined for Precise
controller products and do not conform to any other standards. In the case of certain
methods, such as the SleepTick, very similar functionality is provided by other means
within the Basic language. However, the members of this class were selected based
upon ease-of-use considerations or because they provide some slightly different, but

important, functionality.

As is standard in GPL, conversions between different arithmetic types, e.g. Integer,

Single, Double, are automatically performed as required. So, for numeric properties and
methods of the Controller Class, it is not necessary to have different variations of these
members to deal with the different possible mixes of input parameter data types. Also, as
appropriate, the properties and methods generally produce results that are formatted as

Double’s. These results will automatically be converted to smaller data types as
necessary, e.g. Double -> Integer, and will not generate an error so long as numeric

overflow does not occur.

The table below briefly summarizes the properties and methods that are described in
greater detail in the following sections.

Member Type Description
Controller.Command Method Executes a console comma_md and
returns any output as a String value.
Returns an entry from the system Error
Controller.ErrorLog Property Log as a String value or clears the Error
Log.
Controller.Load Method Loads_ a GPL project ir_1to memory a_nd
compiles it in preparation for execution.
Controller.PDb Property Sets_ and gets any accessible value in the
. configuration parameter database.
Optimized means to set and get a
Controller.PDbNum Property numeric value in the configuration
parameter database.
Sends a request to either turn on or off
Controller.PowerEnabled [Property high (motor) power to the amplifier.
Returns whether high power is on or off.

Copyright © 2022, Brooks Automation, Inc.

30

Brooks Automation

P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Controller Class

Gets the current state of the high power

Controller.PowerState Property

sequence.

Sets and gets the latched Boolean value
Controller.RecordButton [Property that indicates if the hardware MCP

RECORD button has been pressed.
Controller.ShowDialog - Displays a pop-up dialog box on the web

. Method

Basic Operator Control Panel.
Controller.ShowDialog - Method Displays a pop-up dialog box on the web
Advanced Operator Control Panel.

Displays a pop-up dialog box on the LCD
Controller.ShowDialogMCP[Method display of the Precise Hardware Manual

Control Pendant.

Delays further execution of a thread for a
Controller.SleepTick Method specified number of Trajectory Generator

periods.

Sets and gets the Boolean flag that
Controller.SoftEStop Property riggers a Soft E-Stop.

Enters a message into the GPL system
Controller.SystemMessage [Method message log that is displayed on the web

Operator Control Panel.

Sets and gets the property that can
Controller.SystemSpeed [Property reduce the speed of all robot motions.

. Gets the execution repetition period for
Controller.Tick Property the Trajectory Generator.
c . Gets the value of the controller’'s usec
ontroller.Timer Property . :

clock in units of seconds.

Controller.Unload Method Unloads an idle GPL project from

memory.

Copyright © 2022, Brooks Automation, Inc.

31

Controller Class GPL Dictionary Pages
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Controller.Command Method

Executes a console command and returns the command output as a string.
... Controller.Command(command_string)

Prerequisites
None
Parameters
command_string

A required String expression. The String expression can be a String
variable, constant, function or method, or a concatenation of these String
elements. The value of the string is interpreted as a standard Console
Command.

Remarks

This method executes the Console Command defined by the command_string
parameter. For a list of valid commands, please see the Console Command section of
the Documentation Library.

If the command requires additional data, the command_string must contain the command
definition followed by an ASCII line-feed character (GPL constant GPL_LF, numeric
value 10), followed by the additional data. Multiple lines of data may be supplied in the
same manner.

This method returns a string value that contains any output generated by the command,
followed by the command status. Each line of output is terminated by an ASCII line-feed
character. The final line of output is always a status string, followed by a line-feed. If the
command generated no output, the string value contains only the status followed by a
line-feed.

The status string is an ASCII value that contains:

e A numeric status code. 0 means success, < 0 indicates a standard error code.
e Atext string enclosed in quotes corresponding to the numeric status code.

Be careful about issuing a command that could generate a large amount of output such
as a DataLog or Type command. Such a command could consume all available free
storage and cause your system to stop with "No memory available" errors.

32 Copyright © 2022, Brooks Automation, Inc.

Brooks Automation Controller Class
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Examples

Dim ss As String
ss = Controller._Command(*'directory')
Console.WriteLine(ss)
Displays the output:

dev

ROMDISK

flash

GPL

0,"Success"

ss = Controller.Command(''directory xyz'")
Console.WriteLine(ss)

Displays the output:

-508,"*File not found*"
See Also

Controller Class

Copyright © 2022, Brooks Automation, Inc. 33

Controller Class GPL Dictionary Pages
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Controller.ErrorLog Property

Returns an entry from the system Error Log as a String value or clears the Error Log.

Controller.ErrorLog = <value>
Or
... Controller.ErrorLog(entry)

Prerequisites

None
Parameters
entry
A required numeric expression that specifies the Integer number of the
Error Log entry to be returned. This value can range from 1 to n, where
1 indicates that the most recent entry should be returned.
Remarks

Whenever a runtime error occurs in the system, the error is time stamped and entered
into the system Error Log. These errors can be generated by an executing thread or from
the motion control system. In addition, GPL applications can enter items into the log
using the Controller.SystemMessage method.

The entries in the Error Log are displayed on the web based Operator Control Panel and
can be retrieved from the console interface.

This method permits GPL programs to retrieve entries from the Error Log one at a

time. Each returned value contains the time stamp, marker indicating the thread that
generated the error, the numeric error code and the text error message. A example of a
typical returned value is as follows:

04-09-2007 12:27:14.223, Trj, -1611, "*Auto/Manual switch set to Manual*"

If you request an entry that does not exist, an empty string value is returned. Also, if a
new entry is added to the log or the log is cleared as you are scanning through the log,
you may get an inconsistent set of error entries.

If this property is assigned a non-zero value as indicated above, rather than retrieving an
entry, all entries are deleted from the Error Log.

Examples

34 Copyright © 2022, Brooks Automation, Inc.

Brooks Automation
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Controller Class

Dim err As String
Dim ii As Integer
For ii = 1 To 100
err = Controller_ErrorLog(ii)
If (err <> ") Then
Console._WriteLine(err)
Else
Exit For
End If
Next
Controller_ErrorLog = 1

See Also

Retrieve all entries from log
Display all errors

No more entries in the log

Clear all entries in the log

Controller Class | Controller.SystemMessage

Copyright © 2022, Brooks Automation, Inc.

35

Controller Class GPL Dictionary Pages
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Controller.Load Method

Loads the files associated with a GPL project into memory and compiles them so that the
project procedures are ready to be executed.

Controller.Load(project_folder_path)

Prerequisites

The project folder must contain a valid project file named Project.gpr. This project file
describes all the remaining files within the project. The project must not be currently
loaded.

Parameters
project_folder_path

A required string expression that specifies the name of the folder that
contains the project to be loaded. Normally the folder is located on the
"/flash" device.

Remarks

This method loads a project by first creating a folder in the controller's memory section
that is allocated for GPL projects. Then, all of the files associated with the project are
copied into the memory folder. Finally, the project is compiled so that the loaded
procedures are ready to be executed.

No compilation errors are displayed on the console. Examine the file
/GPL/project_name/Compile.log for a listing of compiler messages.

This method will throw an exception if the project cannot be loaded, if it is already loaded,
or if compilation errors occur.

Examples

Dim th As Thread
Controller._Load(""/flash/projects/Test')

th = New Thread(*'Main", "Test', "Thread2'™)
th_Start()

See Also

Controller Class | Controller.Unload | Thread.Start

36 Copyright © 2022, Brooks Automation, Inc.

Brooks Automation Controller Class
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Controller.PDb Property

Sets and gets any accessible value in the configuration parameter database.

Controller.PDb(dataid, unit, unit2, array_index, key) = <new_string_value>

-0r-

... Controller.PDb(dataid, unit, unit2, array_index)

Prerequisites
None
Parameters

dataid

unit

unit2

A required numeric expression that specifies an Integer identification
code for the parameter to be accessed. For example, the parameter for
setting the system “test speed” is 601.

An optional numeric expression that specifies an Integer unit number for
the parameter to be accessed. For many parameters, e.g. the Controller,
only a single unit exists. For parameters that refer to devices with
multiple possible units, e.g. multiple robots driven by a single controller,
this parameter ranges from 1 to n. If not specified, this value defaults to
1.

An optional numeric expression that specifies an Integer sub unit
number for the parameter to be accessed. The use of the sub unit
number is not very common and this parameter is normally just defaulted
to 1.

array_index

key

An optional numeric expression that specifies an Integer array index for
parameters that have multiple values. For example, for a robot with
multiple axes, the “joint maximum soft stop limits” (dataid 16077) is an
array with one value for each joint. If not specified, this value defaults to
0, which reads all possible array values.

Copyright © 2022, Brooks Automation, Inc. 37

Controller Class GPL Dictionary Pages
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

An optional numeric expression that specifies an Integer key code to
override robot configuration protection and set a protected DatalD value.

Remarks

As described in the Controller Software Introduction, all of the key variables for
configuring and monitoring the operation of the system are stored in a unified parameter
database. Controller.PDb can be used to read or write all accessible values in the
parameter database.

Controller.PDb reads parameters and returns the results in a String or writes
parameters by accepting a String expression. If the parameter contains numeric values,
the values are represented as text numbers separated by commas (in the case of
numeric arrays). If the parameter contains a single string value, the value is read into or
read from a GPL String without delimiting quotation marks. If the parameter contains an
array of strings, each string is delimited by double quotes and sequential values are
separated by commas.

As a convenient for developing custom web pages, the parameter database contains a
series of "GPL program strings" (DatalD's 1800-1819) and "GPL program variable's"
(DatalD's 1850-1869). Custom web pages can read and write these values via ASP
operations. Once the controller is restarted, the operating system does not alter any of
these variable values.

taken when writing to general database parameters. Unintentionally

f WARNING: While database values can be freely read, care should be
altering some values may cause the system to not operate properly.

Examples

Dim stg As String

Controller_PDb(541) = ""*"'Labell"","""Label2'""" = Sets first two DOUT labels
stg = Controller.PDb(100) " stg set to ""Brooks Automation'
See Also

Controller Class | Controller.PDbNum

38 Copyright © 2022, Brooks Automation, Inc.

Brooks Automation Controller Class
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Controller.PDbNum Property

Optimized means for setting and getting a numeric value in the configuration parameter
database.

Controller.PDbNum(dataid, unit, unit2, array_index, key) = <new_value>
-Or-
... Controller.PDbNum(dataid, unit, unit2, array_index)

Prerequisites

Can only access numeric parameter database values.
Parameters

dataid

A required numeric expression that specifies an Integer identification
code for the parameter to be accessed. For example, the parameter for
setting the system “test speed” is 601.

unit

An optional numeric expression that specifies an Integer unit number for
the parameter to be accessed. For many parameters, e.g. the Controller,
only a single unit exists. For parameters that refer to devices with
multiple possible units, e.g. multiple robots driven by a single controller,
this parameter ranges from 1 to n. If not specified, this value defaults to
1.

unit2

An optional numeric expression that specifies an Integer sub unit
number for the parameter to be accessed. The use of the sub unit
number is not very common and this parameter is normally just defaulted
to 1.

array_index

An optional numeric expression that specifies an Integer array index for
parameters that have multiple values. For example, for a robot with
multiple axes, the “joint maximum soft stop limits” (dataid 16077) is an
array with one value for each joint. If not specified, this value defaults to
1, the first array element.

Copyright © 2022, Brooks Automation, Inc. 39

Controller Class GPL Dictionary Pages

P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

key

An optional numeric expression that specifies an Integer key code to
override robot configuration protection and set a protected DatalD value.

Remarks

As described in the Controller Software Introduction, all of the key variables for
configuring and monitoring the operation of the system are stored in a unified parameter
database. Controller.PDbNum is an variation of Controller.PDb that has been
optimized to efficiently read and write numeric values stored in this database.

In addition to generally efficient operation, Controller.PDbNum operates especially
quickly when reading and writing the "GPL program variable's" (DatalD's 1850-

1869). These database elements have been created to allow GPL projects to interface to
custom web pages. Custom web pages can read and write these values via ASP
operations. Once the controller is restarted, the operating system does not alter any of
these variable values.

taken when writing to general database parameters. Unintentionally

f WARNING: While database values can be freely read, care should be
altering some values may cause the system to not operate properly.

Examples

Dim limit As Single
limit = Controller.PDbNum(16077,,,2) " Sets limit equal to the maximum
* allowable range of travel for jt 2

See Also

Controller Class | Controller.PDb

40

Copyright © 2022, Brooks Automation, Inc.

Brooks Automation Controller Class
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Controller.PowerEnabled Property

Sends a request to either turn on or off high (motor) power to the amplifier. Returns
whether high power is on or off.

Controller.PowerEnabled = <boolean_value>

-Or-

Controller.PowerEnabled(timeout) = <boolean_value>
Or

... Controller.PowerEnabled

Prerequisites

Enabling power via this software command is not permitted on Category 3 (CAT-3) safe
systems. For Category 3 (CAT-3) systems, a momentary contact, hardware “Enable
Power” button must be manually pressed.

Parameters
timeout
An optional numeric value that specifies the maximum time, in seconds,
to wait for power to come on. If less than or equal to zero or omitted, this
property waits forever.
Remarks

Setting the PowerEnabled property True sends a request to the control system to
enable high power to the amplifiers. For non-Category 3 (CAT-3) safe systems, high
power will be enabled only if a number of safety conditions are satisfied (e.g. no Hard E-
Stop signal is asserted, no fatal system error exists, etc.). This property waits until the
power actually comes on, with a time limit determined by the timeout parameter. If this
parameter is positive and the power does not come on within the time limit, this property
throws an exception that indicates why power did not come on.

Setting the PowerEnabled property False turns off high power to the amplifiers, but the
property does not wait until power is actually off. Unlike the Hard E-Stop signal that
delays for a fixed period of time before disabling power, turning off PowerEnabled forces
all moving robots to completely decelerate to a stop and allows time for the brakes to be
set before power to the amplifiers is disabled. Therefore, setting PowerEnabled False
allows for a more orderly stopping of motion than does a Hard E-Stop but this operation
is consequently somewhat slower.

The PowerEnabled property is automatically set to False by the system if High Power is
disabled by any means and is automatically set to True if High Power is enabled.

Copyright © 2022, Brooks Automation, Inc. 41

Controller Class GPL Dictionary Pages
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Examples

Dim bState As Boolean

Controller_PowerEnabled = True " Requests high power be enabled

Controller.PowerEnabled(5) = True " Requests high power be enabled
" and waits for up to 5 seconds

bState = Controller.PowerEnabled " bState will be set True if power is
® enabled, else will be set False.

See Also

Controller Class | Controller.PowerState | Controller.SoftEstop | Robot.RapidDecel

42 Copyright © 2022, Brooks Automation, Inc.

Brooks Automation

Controller Class

P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Controller.PowerState Property

Reads and returns an Integer value that indicates the current state of the amplifier high
power sequencing.

... Controller.PowerState(mode)

Prerequisites
None
Parameters

mode

An optional numeric expression that is 0 if only the power sequencing
state is to be returned or 1 if a combined power state, hard-stop indicator
and Automatic Execution Mode indicator is to be returned. By default,
this value is 0.

Remarks

In order to enable high power to the amplifiers, the system must transition in an orderly

fashion through several states to ensure that safety and hardware requirements are

satisfied. The PowerState property indicates the current state of the power sequencing.

If mode is 0, the possible values returned by this property and their interpretation are
presented in the following table (this is equivalent to "Power state" DatalD 230):

PowerState

Description (mode = 0)

System initially starting up

Power off, fatal error has occurred

Power off, power sequence restarting

Power being turned off, no fault condition has occurred

Power being turned off, a fault condition has occurred

Power is off, a fault has occurred that must be cleared

Power is off, waiting for hardware enable power switch to be turned
off

Power is off, waiting for enable power signal to be asserted

Power is coming up, enabling amplifiers

Power is on, performing motor commutation

Power is coming up, enabling servos and releasing brakes

Power is on, waiting to execute thread or Auto Execution task

PR
RlEBle|w|~N| o |uls|wN|-|o

Power is on, executing Auto Execution task

Copyright © 2022, Brooks Automation, Inc.

43

Controller Class GPL Dictionary Pages
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

If mode is 1, the possible values returned by this property and their interpretation are
presented in the following table (this is equivalent to "Power/Auto execute state" DatalD

234):
PowerState Description (mode = 1)

0 System initially starting up

1 Power off, fatal error has occurred

2 Power off, power sequence restarting

3 Power being turned off, no fault condition has occurred

4 Power being turned off, a fault condition has occurred

5 Power is off, a fault has occurred that must be cleared

6 Power is off, waiting for hardware enable power switch to be turned
off

7 Power is off, waiting for enable power signal to be asserted

8 Power is coming up, enabling amplifiers

9 Power is on, performing motor commutation

10 Power is coming up, enabling servos and releasing brakes

11 Power is on, waiting to execute thread or Auto Execution task

12 Power is on, executing Auto Execution task

15 Power is off, a Hard E-Stop is being asserted

16 Power being turned on. Safety diagnostics are running

20 Pc;)wer is on, ready for a GPL project to execute and attach the
robot

21 Power is on, a GPL project is executing and has attached the robot

22 Power is on, DIO MotionBlocks is executing

23 Power is on, Automatic Analog Input Velocity mode is executing

24 Power is on, Automatic Analog Input Torque mode is executing

o5 Power is on, Automatic Master/slave mode is executing (not
implemented)

26 Power is on, CANopen via CAN net is executing (not implemented)

27 Power is on, CANopen via serial line is executing (not
implemented)

28 Power is on, robots are being homed

29 Power is on, Virtual MCP Jog Mode has control of the robot

30 Power is on, External Trajectory mode is executing

31 Power is on, Hardware MCP Jog Mode has control of the robot

Examples

Dim state As Integer
state = Controller.PowerState " Sets state to one of the values listed above

See Also

Controller Class | Controller.PowerEnabled | Controller.SoftEstop | Robot.RapidDecel

44 Copyright © 2022, Brooks Automation, Inc.

Brooks Automation Controller Class

P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Controller.RecordButton Property

Reads and writes the latched Boolean value that indicates if the hardware MCP
RECORD button has been pressed.

Controller.RecordButton = <boolean_value>
-Or-
... Controller.RecordButton

Prerequisites
None

Parameters
None

Remarks

Whenever the RECORD key on the Precise Hardware Manual Control Pendant (MCP) is
pressed, the value of this property is automatically set to True. This property value
remains True until it is manually set to False.

The RECORD key on the MCP and this property provide a convenient means for GPL
projects to receive a command from the operator to record key data, typically taught robot
locations.

The value of this property can also be accessed via the Parameter Database as the
"MCP Record button pressed" (DatalD 632) value.

Examples

Dim taught_loc As New Location

IT (Controller_RecordButton) Then
taught_loc.Here " Save current robot location
Controller._RecordButton = False

End if

See Also

Controller Class

Copyright © 2022, Brooks Automation, Inc.

45

Controller Class

GPL Dictionary Pages
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Controller.ShowDialog Method - Basic Modes

Displays a pop-up dialog box on the web interface Operator Control Panel (basic modes)

Controller.ShowDialog(button_labels, message, button_index)
-Or-

Controller.ShowDialog(button_labels, message, button_index, text field)

Prerequisites
None

Parameters

button_labels

A required String expression containing the button labels to be

displayed. Up to 4 buttons can be specified, separated by commas. If the
button labels contain blanks or commas, they should be enclosed in
guotes. The string must not contain the vertical bar "|" character.

message

A required String expression containing the message to be displayed in
the dialog box. The string must not contain the vertical bar "|" character.

button_index

A required ByRef Integer variable that receives the index of the button
pressed in the dialog box. 1 for the first button, 2 for the second, etc.

text_field

(2nd form of this method) An optional ByRef String variable that
receives the value of any text entered into the dialog box text field. Its

initial value is shown as the default value of the text field. The string must
not contain the vertical bar "|" character.

Remarks

This method provides a simple way for a GPL procedure to communicate with the

operator without creating a custom web page. When ShowDialog is called, its operation
is as follows:

1. Waits if another thread is already displaying a dialog box.

46 Copyright © 2022, Brooks Automation, Inc.

Brooks Automation Controller Class
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

2. Posts the dialog box for display and waits for the user to open
the Operator Control Panel on the web interface and press a
button.

3. Un-displays the dialog box.

4. Returns the button index and optional text field to the user.

Since this method generates a dialog box within a browser, any special text formatting
must be defined as standard HTML specifications. In particular, to add a carriage return
and line feed, include "
" within the text. To have a section of text left justified,
precede it with "<p align=left>" and terminate it with "</p>". The total number of
characters available for defining the dialog box including all formatting is approximately
998 bytes.

This method is overloaded to support several dialog box styles. See "ShowDialog -
Advanced " for other forms of this method.

In the simplest (1st) form, the pop-up displays only the message text and labeled buttons.
When the user clicks on one of the buttons, the index of the button clicked is returned in
the button_index variable.

In the text_field (2nd) form, the pop-up also displays a single text field that can be
overwritten by the user. When the user clicks on one of the buttons, the current value of
the text field is returned in the text_field variable, and the index of the button clicked is
returned in the button_index variable.

If the thread displaying the dialog box is paused or stopped, the dialog box is un-
displayed immediately.

Examples

Dim bi As Integer
Controller._ShowDialog(*'Okay", "Ready to begin process", bi)

Copyright © 2022, Brooks Automation, Inc. 47

Controller Class

GPL Dictionary Pages

P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

System Messages

G Bralag

Public Sub Testl

Dim bi As Integer
Dim reply As String
reply = "Part_1" " Default is Part_1
Controller.ShowDialog(''Okay, Cancel', _

"Enter part name", bi, reply)
If bi = 1 Then
. " Okay selected
Else

. * Cancel selected
End If
Console.WriteLine("'You entered: " & reply)

End Sub

48

Copyright © 2022, Brooks Automation, Inc.

Brooks Automation Controller Class
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

System Messages

G Dsialog
Enter part name

art_1

- 1 200 00 40 S B0 T 00 %0 100 + |

See Also

Controller Class | Controller.ShowDialog - Advanced| Controller.ShowDialogMCP |
Controller.SystemMessage

Copyright © 2022, Brooks Automation, Inc. 49

Controller Class GPL Dictionary Pages
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Controller.ShowDialog Method - Advanced Mode

Displays a pop-up dialog box on the web interface Operator Control Panel (Advanced
Mode).

Controller.ShowDialog(mode, button_labels, message, button_index, field_labels,
field_values)

Prerequisites
None
Parameters
mode
A required numeric expression that specifies the display mode.

If mode = 1, displays a vertical list of data fields that can
be filled in by the user.

If mode = 2, displays a vertical list of up to 12 labeled
buttons.

button_labels

A required String expression. The string must not contain the vertical bar
"|" character.

If mode = 1, defines the button labels that are displayed
along the bottom of the dialog box. Up to 4 buttons can
be specified, separated by commas. If the button labels
contain blanks or commas, the labels should be
enclosed in quotes.

If mode = 2, this string is ignored and can be setto ™.

message

A required String expression containing the message to be displayed in
the dialog box. The string must not contain the vertical bar "|" character.

button_index

A required ByRef Integer variable that receives the index of the button
pressed in the dialog box. Set to 1 for the first button, 2 for the second,
etc.

50 Copyright © 2022, Brooks Automation, Inc.

Brooks Automation Controller Class
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

field_labels

A required 1-dimensional String array. Each String array element
contains a separate label. Up to 12 elements are permitted. The strings
must not contain the vertical bar "|" .

If mode = 1, the array elements define labels that are
displayed preceding each data field in the dialog box.
The number of elements in this array determines the
number of displayed fields.

If mode = 2, the array elements define labels for the
vertical list of buttons. The number of elements in this
array determines the number of displayed buttons.

field_values
A required 1-dimensional String array.

If mode = 1, this array receives the values of any text
entered into the dialog box text fields. The initial values
of this array are displayed as the default values of the
text fields. The Strings must not contain the vertical bar
"I" character.

If mode = 2, this array is ignored and may be empty.

Remarks

This method provides a way for a GPL procedure to communicate with the operator
without creating a custom web page. When ShowDialog is called, its operation is as
follows:

1. Waits if another thread is already displaying a dialog box.

2. Posts the dialog box for display and waits for the user to open
the Operator Control Panel on the web interface and click on a
button.

3. Un-displays the dialog box.

4. Returns the button index and optional text field information to the
user.

Since this method generates a dialog box within a browser, any special text formatting
must be defined as standard HTML specifications. In particular, to add a carriage return
and line feed, include "
" within the text. To have a section of text left justified,
precede it with "<p align=left>" and terminate it with "</p>". The total number of
characters available for defining the dialog box including all formatting is approximately
998 bytes.

This method is overloaded to support several dialog box styles. See "ShowDialog -
Basic" for other forms of this method.

Copyright © 2022, Brooks Automation, Inc. 51

Controller Class GPL Dictionary Pages
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

In this form, the dialog box allows different displays based on the mode parameter value.

If mode = 1, multiple fields may be entered and multiple values are
returned. When the user clicks on one of the buttons, the values of all the
fields are returned in the field_values array, and the index of the button
clicked is returned in the button_index variable.

If mode = 2, a vertical array of buttons is displayed, with the field_labels
text values displayed next to each button. The index of the button clicked
is returned in the button_index variable. The field_values parameter is
not used.

If the thread displaying the dialog box is paused or stopped, the dialog box is un-
displayed immediately.

Examples

Public Sub Test2
Dim Buttons As String = "Okay, Cancel"
Dim Text As String = "Enter the field values™
Dim Label(2) As String
Dim Field(2) As String
Dim Index As Integer

Label (0) = "X value"
Label (1) = "Y value™
Label (2) = ""Z value™
Field(0) = "100.0"
Field(1) = "100.0"
Field(2) = "0.0"

Controller.ShowDialog(l, Buttons, Text, Index, Label, Field)

Console.WriteLine(''Button: " & CStr(Index))

Console.WriteLine("'Field 0: " & Field(0))

Console.WriteLine("'Field 1: " & Field(1))

Console.WriteLine("'Field 2: " & Field(2))
End Sub

52 Copyright © 2022, Brooks Automation, Inc.

Brooks Automation Controller Class
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Svystem Messages

L Eviaslancy

| Enter the field values

| Description | Value
1% vahus [100.0

hvmun {1000

2 value [oo

i 40) &0 To o 100 + |
|

Public Sub Test3
Dim Text As String = "Select operation to perform."
Dim Label(2) As String
Dim Nop() As String
Dim Index As Integer

Label (0) = "'Start"
Label (1) = "'Stop"
Label (2) = "Exit"

Controller.ShowDialog(2, "', Text, Index, Label, Nop)

Console.WriteLine(''Button: " & CStr(Index))
End Sub

Copyright © 2022, Brooks Automation, Inc. 53

Controller Class GPL Dictionary Pages
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

System Messages

GIPL Dialog

Select operation to perform.

ystomsooed [T

= 10 20 30 40 F OB T B *

See Also

Controller Class | Controller.ShowDialog - Basic | Controller.ShowDialogMCP |
Controller.SystemMessage

54 Copyright © 2022, Brooks Automation, Inc.

Brooks Automation Controller Class
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Controller.ShowDialogMCP Method

Displays a pop-up dialog box on the LCD display of the Precise Hardware Manual
Control Pendant.

Controller.ShowDialogMCP(button_mask, message, button_return)
-Or-
Controller.ShowDialogMCP(button_mask, message, button_return, text field)

Prerequisites

Precise Hardware Manual Control Pendant must be connected to the controller.

Parameters
button_mask

A required Integer expression whose bits specify the MCP key presses
that will terminate the dialog box. A value of -1 indicates that the
maximum number of keys are permitted to terminate the dialog process.

message

A required String expression containing the message to be displayed on
the LCD display. If a text_field is specified, the message must include a
substring (‘##...##") that defines where the characters of the text_field are
output in the MCP display. The number of pound signs (#) defines the
width of the input field.

button_return

A required ByRef Integer variable that receives the bit flag that indicates
the button that was pressed to terminate the dialog operation.

text_field

An optional ByRef String variable that receives the value of any text
entered into the dialog box text field. The initial value of this variable is
displayed as the default value of the text field. Given the key pad layout
of the Precise MCP, the text_field can only contain a numeric value that
consists of 0-9, ., + or - characters.

Remarks

Copyright © 2022, Brooks Automation, Inc. 55

Controller Class

GPL Dictionary Pages
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

This method provides a simple way for a GPL procedure to communicate with the
operator via the Precise Hardware Manual Control Pendant. (Note: If you wish to
develop a more sophisticated interface, please refer to the /dev/imcp communication

device.)

When ShowDialogMCP is called, its operation is as follows:

1. Waits if another thread is already displaying a MCP dialog box.
2. Replaces the standard MCP display with the contents of the
message and the optional embedded text_field, and lights the

LED on the APP key.

3. If the optional text_field is defined, accepts presses of the 0-9, .,
+, - or DEL keys and presents the results in the LCD display.

4. If the display and keypad are switched back to their standard
mode due to a manual control operation or error message, blinks
the APP key LED until the APP key is pressed to re-display the

dialog.

5. When one of the specified termination keys is pressed, un-

displays the dialog box.

6. Returns the termination key button bit flag and the optional text
field value.

The MCP keypad buttons that can be specified to terminate the dialog mode are listed in
the following table together with their associated button_mask and button_return values.

button_mask&

ey Lebe button_return
Enter &H000001
Record &H000002
Yes &H000004
No &H000008
Quit &H000010
Prev &H000020
Next &H000040
F1 &H010000
F2 &H020000
F3 &H040000
F4 &H080000

By default, when a dialog is first displayed on the MCP, a beep is generated to alert the
operator. The beeping operation can be suppressed by resetting the "Beep MCP when
APP mode started" (DatalD 636) system parameter.

If the thread displaying the dialog box is paused or stopped, the dialog box is un-

displayed immediately.

56

Copyright © 2022, Brooks Automation, Inc.

Brooks Automation Controller Class
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Examples

Dim but As Integer

Dim ss, CRLF As String

CRLF = Chr(GPL_CR) & Chr(GPL_LF)

ss = " Ready to begin" & CRLF & CRLF _
& " <Yes> or <No>"

Controller._ShowDialogMCP(&H4+&H8, ss, but)

Dim but As Integer
Dim reply, ss, CRLF As String
CRLF = Chr(GPL_CR) & Chr(GPL_LF)
ss = " Enter part number:" & CRLF _
& " THHHEHHI#HT" & CRLF & CRLF _
& " <Enter> or <Quit>"
reply = "12" * Default reply value
Controller.ShowDialogMCP(&H1+&H10, ss, but, reply)
If but = &H10 Then
Console.Writeline("'Request cancelled™)
Else
Console._WriteLine(""You entered: " & reply)
End If

See Also

Controller Class | Controller.ShowDialog | Controller.SystemMessage | /dev/mcp Device

Copyright © 2022, Brooks Automation, Inc. 57

Controller Class GPL Dictionary Pages
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Controller.SleepTick Method

Delays further execution of a thread for a specified number of Trajectory Generator
periods.

Controller.SleepTick(ticks)
-Or-
Controller.SleepTick

Prerequisites

None
Parameters
ticks
An optional numeric expression that specifies an Integer number of
Trajectory Generator periods that execution is to be delayed. If this
parameter is not specified, the value is defaulted to 1.
Remarks

Often times, a program must poll input data values periodically. While it is possible to use
a “busy loop” that counts for a fixed number of times, this technique unnecessary
consumes CPU time that could be more productively spent by system drivers or other
GPL threads. The SleepTick method allows a thread to relinquish control of the CPU for
a specified period of time and then resume execution at the next sequential statement.

Since many operations are synchronized to the operation of the Trajectory Generator, the
delay time for this method is specified in units of Trajectory Generator execution periods.

Please note that other programming languages like Basic typically have other means for
putting a thread to sleep for a specified period of time.

Examples

Controller.SleepTick Delays thread execution until
after the start of the next
trajectory cycle

Delays thread execution for

approximately 2 seconds

Controller.SleepTick (2/Controller.Tick)

See Also

Controller Class | Controller.Tick | Controller.Timer

58 Copyright © 2022, Brooks Automation, Inc.

Brooks Automation Controller Class
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Controller.SoftEStop Property

Reads and writes the Boolean value that triggers a Soft E-Stop condition when True.

Controller.SoftEStop = <boolean_value>
-Or-
... Controller.SoftEStop

Prerequisites
None

Parameters
None

Remarks

A Soft E-Stop initiates a rapid deceleration of all robots currently in motion and generates
an error condition for all GPL programs that are attached to a robot. This property can be
used to quickly halt all robot motions in a controlled fashion when an error is detected.

This function is similar to a Hard E-Stop except that Soft E-Stop leaves High Power
enabled to the amplifiers and is therefore used for less severe error conditions. Leaving
power enabled is beneficial in that it prevents the robot axes from sagging and does not
require high power to be manually re-enabled before program execution and robot
motions are resumed. This function is also similar to a Rapid Deceleration feature except
that a Rapid Deceleration only affects a single robot and no program error is generated.

If set, the SoftEStop property is automatically cleared by the system if High Power is
disabled and re-enabled.

Examples

Dim bState As Boolean

Controller._SoftEStop = True " Triggers a Soft E-Stop condition

bState = Controller.SoftEStop " bState will be set True since a
" Soft E-Stop has been asserted

See Also

Controller Class | Controller.PowerEnabled | Controller.PowerState| Robot.RapidDecel

Copyright © 2022, Brooks Automation, Inc. 59

Controller Class GPL Dictionary Pages
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Controller.SystemMessage Method

Enters a message into the GPL system message log that is displayed on the web
Operator Control Panel.

Controller.SystemMessage(message)

Prerequisites

None
Parameters
message
A required String expression containing the message to be entered into
the message log.
Remarks

This method enters a line into the system message log with other system messages and
error message entries. The system message log is kept sorted in time order. This log is
displayed by the Operator Control Panel in the System Messages box.

Examples

Controller.SystemMessage(‘'Cycle time: " & CStr(now-saved))

Controller.SystemMessage(‘'Operation complete™)
See Also

Controller Class | Controller.ErrorLog | Controller.ShowDialog | Controller.ShowDialogMCP

60 Copyright © 2022, Brooks Automation, Inc.

Brooks Automation Controller Class

P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Controller.SystemSpeed Property

Sets and gets the property that can reduce the speed of all robot motions.

Controller.SystemSpeed = <new_%_value>
?.c.)ré:ontroller.System Speed
Prerequisites
None
Parameters
None

Remarks

The SystemSpeed property permits all position and velocity controlled motions for all
robots to be operated at a reduced speed without altering the path that each

follows. This property is provided as a debugging tool to permit all motions to be
executed slowly and then gradually increased to full speed.

This value is specified as a percentage from 1 to 100 where 100 represents full speed as
defined in the motion program being executed. This parameter can also be modified via
the web Operator Control Panel as well as the "System wide test speed in %" (DatalD
601).

When a new value is specified, the change in the motion speeds is gradually put into

effect based upon the setting of the "Rate of change of test speed in %/sec" (DatalD 602)
to avoid excessive accelerations.

Examples

Controller.SystemSpeed = 50 ® All motions at half speed
See Also

Controller Class

Copyright © 2022, Brooks Automation, Inc.

61

Controller Class GPL Dictionary Pages
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Controller.Tick Property

Double value that specifies the execution period for the Trajectory Generator in seconds.
...Controller.Tick

Prerequisites
None

Parameters
None

Remarks

The Trajectory Generator is the task that evaluates robot motion plans and generates the
series of individual commands to move each joint of each robot along its designated path.
To accomplish this task, the Trajectory Generator executes at a configurable repetition
rate. The Tick property returns the period of the repetition rate in seconds. Typically this
will be set to a value of 0.002 or 0.004 seconds.

Examples

Dim period As Double

period = Controller.Tick " Sets period equal to the Trajectory
" Generator execution period, e.g. 0.004
" seconds
See Also

Controller Class | Controller.SleepTick | Controller. Timer

62 Copyright © 2022, Brooks Automation, Inc.

Brooks Automation Controller Class
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Controller.Timer Property

Returns the current value of the controller’s clock, in units of seconds quantiized into 125
usec intervals, as a Double.

...Controller.Timer(select)

Prerequisites

None
Parameters
select
An optional numeric value that selects the reference time for the value
returned. Set to 0 to return the seconds since January 1, 1988 based
upon the time-of-day setting. Set to 1 to return the seconds since the
controller was booted. If omitted, this value defaults to 0.
Remarks

This method reads the current value of the controller’s clock and returns the time in units
of seconds. This value is quantized into 125 psec intervals, the system clock tick period.

If select = 0, this property returns the time since January 1, 1988, according to the
system time-of-day setting. If you change the current time-of-day (using the Date console
command, the web interface, or DatalD 121), the next time this property is read, its value
will reflect the change in the time-of-day setting. This value is useful for generating
absolute timestamps. This value is not recommended for computing incremental time
differences such as time delays and time outs since altering the time-of-day during the
delay will result in unexpected results. Given the number of significant bits in a Double,
this Timer value will not lose accuracy until approximately the year 2124.

If select = 1, this property returns the time since the controller was booted. The starting
point never changes until the controller is rebooted, so this value is useful for computing
time differences and timeout checking. Changing the time-of-day does not affect this
value, so it is recommended that it be used for computing time differences. Given the
number of significant bits in a Double, this Timer value will not lose accuracy until the
controller has been running for 136 years.

Examples

Dim StartTime, ElapsedTime As Double
StartTime = Controller.Timer(1) " Reads controller clock
Controller.SleepTick(2/Controller.Tick) " Sleep for about 2 seconds

Copyright © 2022, Brooks Automation, Inc. 63

Controller Class GPL Dictionary Pages
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

ElapsedTime = Controller.Timer(1l)-StartTime * Value will be approx 2

Dim EndTime As Double
EndTime = Controller.Timer(1) + 5 " Timeout 5 seconds from now
While Signal .DIO(my_sig) = 0
If Controller.Timer(1) > EndTime Then
" Timeout error handler
Exit While
End If
Thread.Sleep(100) " Wait 100 msec
End While

See Also

Controller Class | Controller.SleepTick | Controller.Tick

64 Copyright © 2022, Brooks Automation, Inc.

Brooks Automation Controller Class
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Controller.Unload Method

Unloads the files and data associated with a GPL project from memory.
Controller.Unload(project_name)

Prerequisites

No procedures in this project can be currently executing.
Parameters

project_name

A required string expression that contains the name of the project to be
unloaded.

Remarks

This method unloads a project by removing all of its associated data from the controller's
memory and removing all associated files from the GPL project memory area.

This method throws an exception if any procedure in this project is currently
executing. No exceptions are thrown if the project is not currently loaded or does not
exist.

Examples

Dim th As Thread

Controller.Load(''/flash/projects/Test'")

th = New Thread(*'Main", "Test', "Thread2'™)

th_Start()

th.Join(0) " Wait for thread to complete
Controller.Unload("Test")

See Also

Controller Class | Controller.Load | Thread.Join

Copyright © 2022, Brooks Automation, Inc. 65

Brooks Automation Exception Handling
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Exception Handling

Exception Handling Summary

The following pages provide detail information on the exception handling instructions and
the properties and methods of the Exception Class. The exception handling statements
provide a structured means for a procedure to detect and respond to program execution
exceptions that would otherwise cause the procedure to halt execution. When an
exception occurs, information on the cause of the exception can be automatically saved
in an Exception Object and execution can be branched to a block of code designed to
service the exception.

Exception Objects have two basic forms: a general Exception and a robot
Exception. Both forms store a numerical code that indicates the type of exception. In
addition, the robot Exception includes the number of the robot and the axes that are
associated with the exception. The general form of the Exception includes a Qualifier
value that can provide addition information on the nature of the exception.

The table below briefly summarizes the exception handling statements that are described
in greater detail in the following pages.

Statement Description
Used within a Try...Catch...Finally...End Try series of
Catch statements to mark the start of the block of instructions
executed when an exception occurs.
End Try Marks the end of the exception handling structure.
Exit Tr _Termingtes the execution of a Try or Catch block of
a— instructions.

Used within a Try...Catch...Finally...End Try series of
statements to mark the start of the block of instructions that is

Finally always executed at the completion of the Try or Catch
blocks.
Throw Generates a program execution exception.

Exception handling structure that captures execution
Try...Catch...Finally...lexceptions within a block of instructions and executes
statements to field the exception if necessary.

The table below briefly summarizes the properties and methods of the Exception Class
that are described in greater detail in the following pages.

Member Type Description

Copyright © 2022, Brooks Automation, Inc. 66

Brooks Automation

P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Exception Handling

exception

obj.Axis

Property

Sets and gets a bit mask indicating the
robot axes associated with a robot
Exception.

exception

obj.Clone

Method

Method that returns a copy of the
exception_obj.

exception

obj.ErrorCode

Property

Sets and gets the number of the error
message.

exception

obj.Message

Method

Returns the full text string that is
generated based upon the
exception_obj properties.

exception

obj.Qualifier

Property

Sets and gets the error message
qualifier for a general Exception.

exception

obj.RobotError

Property

Sets and gets the Boolean that
indicates if an Exception is a robot or
general type.

exception

obj.RobotNum

Property

Sets and gets the number of the robot
associated with a robot Exception.

exception

obj.UpdateErrorCode

Method

Updates a general (vague) Exception
error code with a more specific error
code.

Copyright © 2022, Brooks Automation, Inc.

67

Exception Handling GPL Dictionary Pages
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Catch Statement

Used within a Try...Catch...Finally...End Try series of statements to mark the start of the
block of instructions executed when an exception occurs.

Catch exception_object

Prerequisites

Must always follow a Try statement block. Either a Catch or Finally statement or one of
each must appear in a Try structure.

Parameters
exception_object

Required Exception Object. The exception_object must already have a
data section allocated prior to the execution of this instruction, i.e. the
New qualifier should have been previously used in a Dim statement to
instantiate the Object.

Remarks

The Catch statement marks the start of the block of instructions that is executed if an
exception occurs during the execution of the corresponding Try block of instructions. If
the Catch block is triggered, the information on the execution exception is automatically
stored into the exception_object.

If an exception occurs during the execution of the Catch block of statements, thread
execution will be terminated unless the violating instructions are themselves contained
within a Try structure or if a higher-level Try structure exists.

At the completion of the Catch block, the statements in the following Finally block are
executed if they exist, otherwise execution continues at the first step following the
associated End Try.

Please see the documentation on the Try...Catch...Finally...End Try Statements for
further information on the use of this statement.

See Also

Exception Handling | Try...Catch...Finally...End Try Statements

68 Copyright © 2022, Brooks Automation, Inc.

Brooks Automation Exception Handling

P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

End Try Statement

This statement marks the end of the exception handling structure.
End Try

Prerequisites
Must always follow a Catch or Finally statement block.
Remarks

Please see the documentation on the Try...Catch...Finally...End Try Statements for
further information on the use of this statement.

See Also

Exception Handling | Try...Catch...Finally...End Try Statements

Copyright © 2022, Brooks Automation, Inc.

69

Exception Handling GPL Dictionary Pages
P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Exit Try Statement

This statement terminates the execution of either a Try or a Catch block of instructions.
Exit Try

Prerequisites

Can only be specified within a Try or Catch block of instructions. In particular, this
instruction is illegal within a Finally block.

Remarks

If this statement is executed within a Try or a Catch block of instructions, statement
execution immediately branches to the first statement in the Finally block or, if the
Finally block is not defined, the first statement following the subsequent End Try.

Please see the documentation on the Try...Catch...Finally...End Try Statements for
information on the general format of the exception handling structure.

See Also

Exception Handling | Try...Catch...Finally...End Try Statements

70 Copyright © 2022, Brooks Automation, Inc.

Brooks Automation Exception Handling

P/N: GPLO-DI-S1010, Rev 5.0.0, April 9, 2022

Finally Statement

Used within a Try...Catch...Finally...End Try ser